Abstract:
Methods and systems for modifying DOCSIS-based transmission paths for communication in higher frequency and/or wireless environments, such as wireless terrestrial communication systems and satellite communication systems. An inner turbo-code is combined with a DOCSIS based Reed-Solomon (nullRSnull) forward error correction (nullFECnull) coding scheme, to produce a concatenated turbo-RS code (other FEC codes can be utilized). In phase and quadrature phase (nullI-Qnull) processing is utilized to enable relatively low cost up-converter implementations. The I-Q processing is preferably performed at baseband, essentially pre-compensating for analog variations in the transmit path. Power amplifier on/off control capable of controlling on/off RF power control of remote transmitters is modulated on a transmit cable to reduce the need for a separate cable.
Abstract:
A downstream adaptive modulation system and method. The downstream adaptive modulation system comprises a wireless access termination system and one or more wireless modems. The wireless access termination system includes a plurality of queues and a parser. The parser parses data traffic onto the plurality of queues. Each queue is associated with a different coding and modulation scheme. Each of the one or more wireless modems receives data traffic from the plurality of queues based on the wireless modem's ability to demodulate and decode the signal from each of the plurality of queues. When a wireless modem experiences a change in signal strength, the present invention enables the wireless modem to adapt to data from other queues to compensate for the change in signal strength. Thus, if the signal strength improves over a period of time, the wireless modem may receive data at a higher order modulation and FEC code rate. If the signal strength weakens over a period of time, the wireless modem may receive data at a lower order modulation and FEC code rate.
Abstract:
A method, apparatus and computer program product for generating and processing upstream channel descriptor (UCD) messages in a DOCSIS-based broadband communications system, such as a DOCSIS-based two-way satellite communications system, is provided. A satellite modem termination system (SMTS) generates a UCD message that includes one or more standard parameters pertaining to an upstream channel of the two-way satellite communications system, wherein the one or more standard parameters are defined in accordance with the DOCSIS protocol, and one or more satellite application-specific parameters pertaining to the upstream channel, wherein the one or more satellite application specific parameters are not provided for by the DOCSIS protocol. The UCD message is transmitted to a satellite modem that extracts both the standard and satellite application-specific parameters for use in managing communication over the upstream channel.
Abstract:
A system and method for requesting additional bandwidth in a communications channel between one or more first satellite terminal devices and a second satellite terminal device, are provided. The method includes identifying an available field in a header to be transmitted from the one or more first devices to the second device and allocating at least a portion of the available field for requesting the additional bandwidth. A size of the available field is reconfigurable. The method also includes forwarding the extend header to the second device.
Abstract:
Satellite communications are carried out using the Data Over Cable Interface Specification (DOCSIS). Satellite modems are notified of upstream channel congestion by inserting a congestion notification message in a medium access protocol (MAP) message for the upstream channel. Specifically, the congestion notification message is inserted in an unused field of the MAP message, such as the explicit congestion notification (ECN) field. The MAP message can also carry other characteristics of the upstream channel, including priority threshold, multicast access burst availability, and available bandwidth.
Abstract:
A transceiver includes a Downstream Signal Processor (DSP), an Upstream Signal Processor (USP), a Local Oscillator (LO), a differencer, a reference signal generator, and an estimator. The DSP receives an initial downstream signal, a downstream LO signal from the LO, and from the estimator a frequency-offset estimate indicative of a free-running frequency offset included in the initial downstream signal. The DSP uses the LO signal and the estimate to frequency down-convert the initial downstream signal, and also to remove the frequency offset from the initial downstream signal, thereby producing a corrected downstream signal. The USP uses both an upstream LO signal from the LO and the estimate to frequency convert an initial upstream signal so as to produce a frequency pre-corrected upstream signal.