Measuring arrangement for x-ray radiation having reduced parallax effects

    公开(公告)号:US11788975B2

    公开(公告)日:2023-10-17

    申请号:US17622738

    申请日:2020-06-17

    申请人: Bruker AXS GmbH

    IPC分类号: G01N23/207

    CPC分类号: G01N23/207 G01N2223/056

    摘要: A measuring arrangement (20) for x-ray radiation, comprising—a sample position (3), which can be illuminated by xray radiation (2) and—an x-ray detector (13) for detecting x-ray radiation emitted from the sample position (3), comprising at least one detector module (21-24), wherein the detector module (21-24) has a plurality of sensor elements (14; 14a-14e) arranged successively in a measuring direction (MR), each sensor element having a centroid (18), wherein the sensor elements (14; 14a-14e) are arranged in a common sensor plane (16) of the detector module (21-24), is characterized in that at least a majority of the sensor elements (14; 14a-14e) of the detector module (21-24), preferably all the sensor elements (14; 14a-14e) of the detector module (21-24), are designed as uniformly spaced sensor elements (14; 14a-14e), wherein the centroids (18) of the sensor elements (14; 14a-14e) have an equal distance R0 from the sample position (3). The measuring arrangement according to the invention can be implemented having flat detector modules, in particular semiconductor detector modules, and is less susceptible to measurement errors.

    Measurement arrangement for X-ray radiation for gap-free 1D measurement

    公开(公告)号:US12031924B2

    公开(公告)日:2024-07-09

    申请号:US17432676

    申请日:2020-02-18

    申请人: Bruker AXS GmbH

    IPC分类号: G01N23/20008 G01N23/207

    摘要: In summary, the present invention proposes embodying an X-ray detector (21) with a plurality of detector modules (1, 1a-1g), each comprising dead zones (6) without X-ray sensitivity and active zones (3, 3a-3c) with X-ray sensitivity that is spatially resolved in a measurement direction (MR), wherein the detector modules (1, 1a-1g) are embodied successively and in an overlapping fashion along the measurement direction (MR), such that in overlap regions (23a-23e) the dead zone (6) of one detector module (1, 1a-1g) is bridged by an active zone (3, 3a-3c) of another detector module (1, 1a-1g). The overlapping detector modules (1, 1a-1g) are arranged next to one another in the transverse direction (QR) in the overlap regions (23a-23e), wherein the transverse direction (QR) runs transversely with respect to the local measurement direction (MR) and transversely with respect to a local connection direction (VR) with respect to a sample position (91). The X-ray detector (21) makes it possible, in a simple manner, to obtain gapless, one-dimensional measurement information, in particular X-ray diffraction information, from a measurement sample (96) at the sample position (91).