摘要:
A method of generating post-mission position and orientation data comprises generating position and orientation data representing positions and orientations of a mobile platform, based on global navigation satellite system (GNSS) data and inertial navigation system (INS) data acquired during a data acquisition period by the mobile platform, using a network real-time kinematic (RTK) subsystem to generate correction data associated with the data acquisition period, and correcting the position and orientation data based on the correction data. The RTK subsystem may implement a virtual reference station (VRS) technique to generate the correction data.
摘要:
A method of generating post-mission position and orientation data comprises generating position and orientation data representing positions and orientations of a mobile platform, based on global navigation satellite system (GNSS) data and inertial navigation system (INS) data acquired during a data acquisition period by the mobile platform, using a network real-time kinematic (RTK) subsystem to generate correction data associated with the data acquisition period, and correcting the position and orientation data based on the correction data. The RTK subsystem may implement a virtual reference station (VRS) technique to generate the correction data.
摘要:
A method of generating post-mission position and orientation data comprises generating position and orientation data representing positions and orientations of a mobile platform, based on global navigation satellite system (GNSS) data and inertial navigation system (INS) data acquired during a data acquisition period by the mobile platform, using a network real-time kinematic (RTK) subsystem to generate correction data associated with the data acquisition period, and correcting the position and orientation data based on the correction data. The RTK subsystem may implement a virtual reference station (VRS) technique to generate the correction data.
摘要:
A method of generating post-mission position and orientation data comprises generating position and orientation data representing positions and orientations of a mobile platform, based on global navigation satellite system (GNSS) data and inertial navigation system (INS) data acquired during a data acquisition period by the mobile platform, using a network real-time kinematic (RTK) subsystem to generate correction data associated with the data acquisition period, and correcting the position and orientation data based on the correction data. The RTK subsystem may implement a virtual reference station (VRS) technique to generate the correction data.
摘要:
A real-time high accuracy position and orientation system (RT-HAPOS) system for a vehicle, such as an aircraft, comprises a global navigation satellite system (GNSS) receiver disposed on the vehicle and an integrated inertial navigation (IIN) module disposed on the vehicle. The GNSS receiver generates GNSS position data indicating approximate positions of the vehicle during a data acquisition period in which the vehicle is moving. The IIN module executes a real-time kinematic (RTK) algorithm during the data acquisition period to generate output position data indicating positions of the vehicle at a greater precision than the GNSS position data, based on the GNSS position data, inertial measurement data acquired on the vehicle during the data acquisition period, and a set of virtual reference station (VRS) observables received during the data acquisition period from a remote source external to the vehicle, where the VRS observables are based on the GNSS position data.
摘要:
Methods and apparatus for processing of GNSS data derived from multi-frequency code and carrier observations are presented which make available correction data for use by a rover located within the region, the correction data comprising: the ionospheric delay over the region, the tropospheric delay over the region, the phase-leveled geometric correction per satellite, and the at least one code bias per satellite. In some embodiments the correction data includes an ionospheric phase bias per satellite. Methods and apparatus for determining a precise position of a rover located within a region are presented in which a GNSS receiver is operated to obtain multi-frequency code and carrier observations and correction data, to create rover corrections from the correction data, and to determine a precise rover position using the rover observations and the rover corrections. The correction data comprises at least one code bias per satellite, a fixed-nature MW bias per satellite and/or values from which a fixed-nature MW bias per satellite is derivable, and an ionospheric delay per satellite for each of multiple regional network stations and/or non-ionospheric corrections. Methods and apparatus for encoding and decoding the correction messages containing correction data are also presented, in which network messages include network elements related to substantially all stations of the network and cluster messages include cluster elements related to subsets of the network.
摘要:
Methods and apparatus are provided for estimating parameters, i.e. ambiguities, derived from GNSS signals. Observations of a GNSS signal from each of a plurality of GNSS satellites are obtained (4120). The observations are fed to a filter having a state vector at least comprising a float ambiguity for each received frequency of the GNSS signals, each float ambiguity constituting a real number estimate associated with an integer number of wavelengths of the GNSS signal between a receiver of the GNSS signal and the GNSS satellite from which it is received, and the filter being for estimating a float value for each float ambiguity of the state vector (4140). A subset of float ambiguities of the state vector is selected (4150). Integer values are assigned to the estimated float values of the float ambiguities of the subset to define a plurality of integer ambiguity candidate sets (4160). A quality measure is determined for each of the candidate sets. A weighted average of the candidate sets is formed (4200). Ambiguities of the weighted average can be used in subsequent operations to aid in determining a position of the receiver or can be used to prepare data, e.g., in a network processor that can be used to augment position information of a rover.
摘要:
Methods and apparatus are provided for estimating parameters, i.e. ambiguities, derived from GNSS signals. Observations of each of received frequencies of a GNSS signal from a plurality of GNSS satellites are obtained for a plurality of instances in time (3120). The time sequence of observations is fed to a filter to estimate a state vector comprising float ambiguities, wherein each float ambiguity constitutes a non integer estimate of an integer number of wavelengths for a received frequency of a GNSS signal between a receiver of the GNSS signal and the GNSS satellite from which it is received and wherein the float ambiguities of the state vector are updated over time on the basis of the observations (3140). The occurrence of an interruption in tracking of at least one signal of a satellite is determined (3121). The float ambiguity of the state vector for the at least one signal for which an interruption in tracking occurred is maintained at the value before the interruption in tracking occurred (3122). Integer values are assigned to at least a subgroup of the estimated float values to define a plurality of integer ambiguity candidate sets (3160). A quality measure is determined for each of the candidate sets. A weighted average of the candidate sets is formed (3200). Ambiguities of the weighted average can be used in subsequent operations to aid in determining a position of the receiver or can be used to prepare data, e.g., in a network processor that can be used to augment position information of a rover.
摘要:
Control systems and methods that provide a high degree of vertical measurement accuracy for a body in motion are disclosed. The systems employ an inertial sensor system for vertical measurement and a Global Navigation Satellite System that includes multipath reduction or attenuation to provide corrected vertical information for a moving body to the inertial sensor system. The combination of these systems enables the maintenance of an accurate vertical position for said body.
摘要:
Methods and apparatus for processing of GNSS data derived from multi-frequency code and carrier observations are presented which make available correction data for use by a rover located within the region, the correction data comprising: the ionospheric delay over the region, the tropospheric delay over the region, the phase-leveled geometric correction per satellite, and the at least one code bias per satellite. In some embodiments the correction data includes an ionospheric phase bias per satellite. Methods and apparatus for determining a precise position of a rover located within a region are presented in which a GNSS receiver is operated to obtain multi-frequency code and carrier observations and correction data, to create rover corrections from the correction data, and to determine a precise rover position using the rover observations and the rover corrections. The correction data comprises at least one code bias per satellite, a fixed-nature MW bias per satellite and/or values from which a fixed-nature MW bias per satellite is derivable, and an ionospheric delay per satellite for each of multiple regional network stations and/or non-ionospheric corrections. Methods and apparatus for encoding and decoding the correction messages containing correction data are also presented, in which network messages include network elements related to substantially all stations of the network and cluster messages include cluster elements related to subsets of the network.