摘要:
Method and device for testing a security element (4) of a security document, the security element (4) being able to contain at least one substance (5) which has optically variable properties, including the following method steps:illuminating the security element (4) with at least one predetermined illumination parameter, filtering the light reflected by the security element into a first component (RLp) having a first polarisation, determining an intensity (I) of the first component (RLp) of reflected light reflected at a reflection angle (φR), for at least one reflection angle (φR), and verifying the presence of a substance (5) which has optically variable properties as a function of the intensity (I) of the first component (RLp).
摘要:
Method and device for testing a security element (4) of a security document, the security element (4) being able to contain at least one substance (5) which has optically variable properties, including the following method steps:illuminating the security element (4) with at least one predetermined illumination parameter, filtering the light reflected by the security element into a first component (RLp) having a first polarisation, determining an intensity (I) of the first component (RLp) of reflected light reflected at a reflection angle (ϕR), for at least one reflection angle (ϕR), and verifying the presence of a substance (5) which has optically variable properties as a function of the intensity (I) of the first component (RLp).
摘要:
A method and a device check a security element of a security document. The security element contains at least one particulate substance with electroluminescent properties and at least one field suppression element. The method includes applying an electric excitation field to the security element, generating an optical image of at least one region of the security element after or during the production of the electric excitation field, and detecting local intensity maxima in the optical image. The security element is verified if a number of local intensity maxima present at different image positions is greater than or equal to a specified number, the number being at least two.
摘要:
The present invention firstly relates to a security feature for a security or value document. The security feature comprises a zinc sulfide luminophore in the form of particles. The zinc sulfide luminophore has the general chemical formula ZnS: Cux, My, Xz; here, M represents one or more elements from a group comprising the chemical elements Co, In and Ni; X represents one or more elements from a group comprising the halides F, Cl, Br and I; and the following applies: 0
摘要:
A method and a device check a security element of a security document. The security element contains at least one particulate substance with electroluminescent properties and at least one field suppression element. The method includes applying an electric excitation field to the security element, generating an optical image of at least one region of the security element after or during the production of the electric excitation field, and detecting local intensity maxima in the optical image. The security element is verified if a number of local intensity maxima present at different image positions is greater than or equal to a specified number, the number being at least two.
摘要:
The present invention relates to a zinc sulphide phosphor and to a process for producing same. The invention further relates to a security document or document of value, to a security feature and to a method for detecting same. The phosphor according to the invention can act as electroluminescent phosphor and thus be excited by an electrical field, and this can result in emission of electroluminescent light in the blue and/or green color region of the visible spectrum. The phosphor can moreover be excited by UV radiation in the wavelength range than 345 nm to 370 nm, and can thus emit photoluminescent light in the blue color region of the visible spectrum. The phosphor can moreover be excited by UV radiation in the wavelength range from 310 nm in 335 nm, and can thus emit photoluminescent light in the green color region of the visible spectrum.