Text mining method
    1.
    发明申请
    Text mining method 审中-公开
    文本挖掘方法

    公开(公告)号:US20050283357A1

    公开(公告)日:2005-12-22

    申请号:US10970586

    申请日:2004-10-21

    IPC分类号: G06F17/28 G06F17/30

    CPC分类号: G06F16/313

    摘要: A method for performing data mining is provided. The method includes selecting at least one data source of unstructured text. Additionally, a transformation is selected to identify a list of terms in the unstructured text. A run-time path is established to connect the data source to the transformation to load the list of terms identified into a destination database.

    摘要翻译: 提供了一种执行数据挖掘的方法。 该方法包括选择非结构化文本的至少一个数据源。 此外,选择转换以识别非结构化文本中的术语列表。 建立运行时路径以将数据源连接到转换,以将标识的术语列表加载到目标数据库中。

    Systems and methods that facilitate data mining
    2.
    发明申请
    Systems and methods that facilitate data mining 失效
    促进数据挖掘的系统和方法

    公开(公告)号:US20060010110A1

    公开(公告)日:2006-01-12

    申请号:US11049031

    申请日:2005-02-02

    IPC分类号: G06F17/30

    摘要: A system that facilitates data mining comprises a reception component that receives command(s) in a declarative language that relate to utilizing an output of a first data mining model as an input to a second data mining model. An implementation component analyzes the received command(s) and implements the command(s) with respect to the first and second data mining models. In another aspect of the subject invention, the reception component can receive further command(s) in a declarative language with respect to causing one or more of the first and second data mining models to output a prediction, the prediction desirably generated without prediction input, the implementation component causes the one or more of the first and second data mining models to output the prediction.

    摘要翻译: 便于数据挖掘的系统包括:接收组件,其以声明性语言接收与将第一数据挖掘模型的输出利用为第二数据挖掘模型的输入相关的命令。 实现组件分析所接收的命令并且针对第一和第二数据挖掘模型实现命令。 在本发明的另一方面,接收组件可以以声明性语言接收另外的命令,以使得第一和第二数据挖掘模型中的一个或多个输出预测,期望地产生而不具有预测输入的预测, 实现组件使第一和第二数据挖掘模型中的一个或多个输出预测。

    Modeling sequence and time series data in predictive analytics
    3.
    发明申请
    Modeling sequence and time series data in predictive analytics 有权
    预测分析中的建模序列和时间序列数据

    公开(公告)号:US20060010142A1

    公开(公告)日:2006-01-12

    申请号:US11116832

    申请日:2005-04-28

    IPC分类号: G06F7/00

    CPC分类号: G06F17/30539 G06F17/30548

    摘要: The subject invention relates to systems and methods to extend the capabilities of declarative data modeling languages. In one aspect, a declarative data modeling language system is provided. The system includes a data modeling language component that generates one or more data mining models to extract predictive information from local or remote databases. A language extension component facilitates modeling capability in the data modeling language by providing a data sequence model or a time series model within the data modeling language to support various data mining applications.

    摘要翻译: 本发明涉及扩展声明式数据建模语言能力的系统和方法。 在一个方面,提供了一种声明式数据建模语言系统。 该系统包括数据建模语言组件,其生成一个或多个数据挖掘模型以从本地或远程数据库提取预测信息。 语言扩展组件通过在数据建模语言中提供数据序列模型或时间序列模型来促进数据建模语言中的建模能力,以支持各种数据挖掘应用程序。

    Drill-through queries from data mining model content
    4.
    发明申请
    Drill-through queries from data mining model content 失效
    来自数据挖掘模型内容的钻取查询

    公开(公告)号:US20050021482A1

    公开(公告)日:2005-01-27

    申请号:US10611119

    申请日:2003-06-30

    摘要: A drill-through feature is provided which provides a universal drill-through to mining model source data from a trained mining model. In order for a user or application to obtain model content information on a given node of a model, a universal function is provided whereby the user specifies the node for a model and data set, and the cases underlying that node for that model and data set are returned. A sampling of underlying cases may be provided, where only a sampling of the cases represented in the node is requested.

    摘要翻译: 提供钻取功能,其提供了从受过训练的挖掘模型挖掘模型来源数据的通用钻取。 为了使用户或应用程序获得模型的给定节点上的模型内容信息,提供通用功能,借此用户为模型和数据集指定节点,并为该模型和数据集指定该节点的情况 被归还。 可以提供对基础案例的抽样,其中仅请求节点中表示的案例的抽样。

    Transform for outlier detection in extract, transfer, load environment
    5.
    发明申请
    Transform for outlier detection in extract, transfer, load environment 有权
    在提取,传输,加载环境中进行异常值检测

    公开(公告)号:US20070239636A1

    公开(公告)日:2007-10-11

    申请号:US11375850

    申请日:2006-03-15

    IPC分类号: G06F15/18

    CPC分类号: G06N7/005 Y10S707/99936

    摘要: Systems and methods that cleanse data in Extract, Transform, Load environments (ETL), via employing an outlier detect component that is positioned in data pipeline to data warehouse(s). Such outlier detect component employs a cluster mining model to split data into normal and outlier data. Different predictive models can be employed to detect outliers in different data slices to enhance the accuracy of the predictions. In addition, a graphical user interface (GUI) enables a user to interact with cluster groups that are created and/or analyzed by the outlier detect component.

    摘要翻译: 通过采用位于数据管道到数据仓库的异常值检测组件,在Extract,Transform,Load Environment(ETL)中清除数据的系统和方法。 这种异常检测组件采用集群挖掘模型将数据分解为正常数据和异常数据。 可以采用不同的预测模型来检测不同数据片段中的异常值,以提高预测的准确性。 此外,图形用户界面(GUI)使得用户能够与异常值检测组件创建和/或分析的群集组进行交互。

    Predictive caching and lookup
    6.
    发明申请
    Predictive caching and lookup 审中-公开
    预测缓存和查找

    公开(公告)号:US20070143547A1

    公开(公告)日:2007-06-21

    申请号:US11312271

    申请日:2005-12-20

    IPC分类号: G06F12/00

    CPC分类号: G06F12/0862 G06F2212/6026

    摘要: The subject disclosure pertains to systems and methods for data caching and/or lookup. A data-mining model can be employed to identify data item relationships, associations, and/or affinities. A cache or other fast memory can then be populated based on data mining information. A lookup component can interact with the memory to facilitate expeditious lookup or discovery of information, for example to aid data warehouse population, amongst other things.

    摘要翻译: 本发明涉及用于数据缓存和/或查找的系统和方法。 可以采用数据挖掘模型来识别数据项关系,关联和/或亲和力。 然后可以基于数据挖掘信息填充高速缓存或其他快速存储器。 查找组件可以与存储器进行交互,以便于快速查找或发现信息,例如帮助数据仓库群体等。

    Unstructured data in a mining model language
    8.
    发明申请
    Unstructured data in a mining model language 失效
    挖掘模型语言中的非结构化数据

    公开(公告)号:US20070214164A1

    公开(公告)日:2007-09-13

    申请号:US11373319

    申请日:2006-03-10

    IPC分类号: G06F7/00

    摘要: A standard mechanism for directly accessing unstructured data types (e.g., image, audio, video, gene sequencing and text data) in accordance with data mining operations is provided. The subject innovation can enable access to unstructured data directly from within the data mining engine or tool. Accordingly, the innovation enables multiple vendors to provide algorithms for mining unstructured data on a data mining platform (e.g., an SQL-brand server), thereby increasing adoption. As well, the subject innovation allows users to directly mine unstructured data that is not fixed-length, without pre-processing and tokenizing the data external to the data mining engine. In accordance therewith, the innovation can provide a mechanism to expand declarative language content types to include an “unstructured” data type thereby enabling a user and/or application to affirmatively designate mining data as an unstructured type.

    摘要翻译: 提供了一种用于根据数据挖掘操​​作直接访问非结构化数据类型(例如,图像,音频,视频,基因排序和文本数据)的标准机制。 主题创新可以直接从数据挖掘引擎或工具中访问非结构化数据。 因此,该创新使得多个供应商能够提供用于在数据挖掘平台(例如,SQL品牌服务器)上挖掘非结构化数据的算法,从而增加采用。 此外,本创新允许用户直接挖掘不固定长度的非结构化数据,而不需要对数据挖掘引擎外部的数据进行预处理和标记。 根据此,创新可以提供一种机制来扩展声明性语言内容类型以包括“非结构化”数据类型,从而使得用户和/或应用程序肯定地将挖掘数据指定为非结构化类型。

    Extensible data mining framework
    9.
    发明申请
    Extensible data mining framework 有权
    可扩展数据挖掘框架

    公开(公告)号:US20060020620A1

    公开(公告)日:2006-01-26

    申请号:US11157602

    申请日:2005-06-21

    IPC分类号: G06F17/00

    CPC分类号: G06F17/30539 G06F2216/03

    摘要: The subject disclosure pertains to extensible data mining systems, means, and methodologies. For example, a data mining system is disclosed that supports plug-in or integration of non-native mining algorithms, perhaps provided by third parties, such that they function the same as built-in algorithms. Furthermore, non-native data mining viewers may also be seamlessly integrated into the system for displaying the results of one or more algorithms including those provided by third parties as well as those built-in. Still further yet, support is provided for extending data mining languages to include user-defined functions (UDFs).

    摘要翻译: 主题公开涉及可扩展数据挖掘系统,手段和方法。 例如,公开了一种数据挖掘系统,其支持可能由第三方提供的非本地挖掘算法的插件或集成,使得它们与内置算法相同。 此外,非本地数据挖掘查看器还可以无缝地集成到系统中,用于显示包括由第三方提供的那些算法的一个或多个算法的结果以及内置的算法。 此外,还提供了用于扩展数据挖掘语言以包括用户定义的功能(UDF)的支持。

    Data mining structure
    10.
    发明申请
    Data mining structure 审中-公开
    数据挖掘结构

    公开(公告)号:US20050021489A1

    公开(公告)日:2005-01-27

    申请号:US10624278

    申请日:2003-07-22

    IPC分类号: G06F7/00

    摘要: A mining structure is created which contains processed data from a data set. This data may be used to train one or more models. In addition to the selection of data to be used by model from data set, processing parameters are set, in one embodiment. For example, the discretization of a continuous variable into buckets, the number of buckets, and/or the sub-range corresponding to each bucket is set when the mining structure is created. The mining structure is processed, which causes the processing and storage of data from data set in the mining structure. After processing, the mining structure can be used by one or more models.

    摘要翻译: 创建一个挖掘结构,其中包含来自数据集的已处理数据。 该数据可用于训练一个或多个模型。 除了从数据集中选择要由模型使用的数据之外,在一个实施例中,设置处理参数。 例如,当创建采矿结构时,设置连续变量到桶的离散化,桶的数量和/或对应于每个桶的子范围。 对采矿结构进行处理,对采矿结构中数据集的数据进行处理和存储。 处理后,采矿结构可以由一个或多个型号使用。