Abstract:
A radiation detecting apparatus includes a scintillator and a photoelectric conversion panel. The photoelectric conversion panel includes a frame member disposed on an outer side of a photoelectric conversion section along at least a portion of one side of the photoelectric conversion panel. The frame member includes an inclined surface having a downward slope toward the photoelectric conversion section. The scintillator includes a first scintillator formed continuously on the inclined surface of the frame member and a surface of the photoelectric conversion section, and a second scintillator formed on the first scintillator. The first scintillator has a non-columnar crystal structure, and the second scintillator has a columnar crystal structure.
Abstract:
A radiographic photographing apparatus includes a radiation sensor panel including a photoelectric conversion unit in which a conversion element configured to detect radiation or light is arranged; a light source unit having a light source configured to emit light having a wavelength different from the radiation to the radiation sensor panel; and a conductive member arranged between the radiation sensor panel and the light source unit and configured to receive a supply of a fixed potential.
Abstract:
A radiation detection apparatus, comprising a housing including a first plate portion and a second plate portion arranged to face each other, a scintillator configured to convert a radiation into light, supported by a supporting portion arranged in a side of the second plate portion in the housing, a sensor panel including a sensor array in which a plurality of sensors for detecting light are arrayed, interposed between the scintillator and the first plate portion in the housing, and a member interposed between the first plate portion and the sensor panel in the housing, wherein the sensor panel is arranged to position an outer edge of the sensor panel outside an outer edge of the scintillator, and the member is arranged to position an outer edge of the member inside the outer edge of the scintillator.
Abstract:
A radiation imaging apparatus comprising a plurality of sensor units each including a plurality of photoelectric converters, a substrate configured to support the plurality of sensor units, and a scintillator, wherein the scintillator comprises scintillator grains configured to convert radiation into light and a binder configured to make the scintillator grains adhere to each other, and the scintillator includes first portions provided between the plurality of sensor units and a second portion provided on the plurality of sensor units and the substrate.
Abstract:
A radiation detecting apparatus includes a scintillator and a photoelectric conversion panel. The photoelectric conversion panel includes a frame member disposed on an outer side of a photoelectric conversion section along at least a portion of one side of the photoelectric conversion panel. The frame member includes an inclined surface having a downward slope toward the photoelectric conversion section. The scintillator includes a first scintillator formed continuously on the inclined surface of the frame member and a surface of the photoelectric conversion section, and a second scintillator formed on the first scintillator. The first scintillator has a non-columnar crystal structure, and the second scintillator has a columnar crystal structure.
Abstract:
A radiation imaging apparatus comprising a plurality of sensor units each including a plurality of photoelectric converters, a substrate configured to support the plurality of sensor units, and a scintillator, wherein the scintillator comprises scintillator grains configured to convert radiation into light and a binder configured to make the scintillator grains adhere to each other, and the scintillator includes first portions provided between the plurality of sensor units and a second portion provided on the plurality of sensor units and the substrate.
Abstract:
A radiation imaging apparatus, comprising a sensor panel including a sensor array on which a plurality of sensors arranged in an array form and a scintillator layer provided on the sensor array, and a unit configured to perform signal processing based on a signal from the sensor array, wherein the sensor array includes a peripheral region and a central region located inside the peripheral region, the scintillator layer is disposed over the peripheral region and the central region so as to have uniform luminance efficiency with respect to the sensor array, and the unit performs the signal processing by using only signals from sensors disposed in the central region, of signals from the plurality of sensors, output from the sensor panel.
Abstract:
A sensor panel provided with a photoelectric conversion element that detects entering light, a columnar-structure scintillator layer arranged on the sensor panel, a light reflection layer formed on the columnar-structure scintillator layer, and a resin layer including a particulate scintillator formed between the columnar-structure scintillator layer and the light reflection layer are included in a detecting apparatus, and the resin layer includes a particulate scintillator.
Abstract:
A radiation imaging apparatus includes a phosphor layer configured to convert an incident radiant ray into light, a first imaging substrate arranged on a side of a first surface, on which the radiant ray is incident, of the phosphor layer and having, on the side of the first surface, a first pixel area including a plurality of pixels each including a photoelectric conversion element for converting the light into an electric signal, and a second imaging substrate arranged on a side of a second surface of the phosphor layer and having, on the side of the second surface, a second pixel area including a plurality of pixels each including a photoelectric conversion element for converting the light into an electric signal, wherein the second imaging substrate is arranged so that the second pixel area is located opposite a pixel non-formation area, where the first pixel area is not formed.
Abstract:
A radiation detection apparatus include a sensor substrate having a pixel array and a connection terminal connected to the pixel array on a first surface; and a scintillator layer that is arranged on the first surface side; a circuit board that is arranged on a side of the scintillator layer that is opposite to a side facing the sensor substrate; and a connection portion configured to connect the connection terminal to the circuit board. The scintillator layer is arranged so as to cover the pixel array but expose the connection terminal. The circuit board and the connection portion are arranged in locations where they do not protrude from the outer edge of the first surface of the sensor substrate.