Abstract:
A radiation imaging panel comprising a substrate in which a plurality of pixels each including a photoelectric conversion element are arranged, a scintillator containing a plurality of columnar crystals arranged on the substrate, and a protective layer is provided. The protective layer includes a first resin layer arranged so as to cover the scintillator and a second resin layer arranged on the first resin layer, and the first resin layer contains a resin to which particles of a metal compound is added. A light reflectance r1 [%] of the first resin layer satisfies 47%
Abstract:
Pixel array includes pixels each including conversion element, and switch having control terminal, first primary terminal connected to the conversion element, and second primary terminal connected to one of signal lines. The pixel array includes pixel groups each including pixels arrayed to form at least 2 row×2 column pattern. In pixels of each pixel group, the control terminals are connected to different driving lines and the second primary terminals are commonly connected to one of the signal lines. In the pixel groups, first and second pixel groups are arranged adjacent to each other in column direction. Signal is read from the first pixel group via the first signal line of the single lines. Signal is read from the second pixel group via the second signal line of the single lines.
Abstract:
A method of manufacturing a radiation detection apparatus, includes a bonding step of bonding, on a support substrate, a sensor substrate including a photoelectric converter in which a plurality of photoelectric conversion elements are arranged, by using a bonding layer including a passage which exhausts a gas between the support substrate and the sensor substrate, and a formation step of forming a scintillator layer on the photoelectric converter after the bonding step. The bonding layer has a heat resistance by which bonding between the support substrate and the sensor substrate by the bonding layer is maintained in the formation step.
Abstract:
A radiation detection apparatus including a sensor panel which includes a plurality of pixels two-dimensionally arranged on a substrate and detects light, and a scintillator layer which is disposed on the sensor panel and converts radiation into light, the apparatus, comprising members embedded in regions between the plurality of pixels in the scintillator layer, wherein the member satisfies a relationship of μX≧μS where μX is a linear attenuation coefficient of the member and μS is a linear attenuation coefficient of a material forming the scintillator layer, contains a material whose light emission amount is smaller than that of the scintillator layer when the radiation enters, and gradually decreases in width from an upper surface to a lower surface.
Abstract:
A scintillator having a columnar crystal structure vapor-deposited on a substrate, wherein each column of the crystal structure contains an alkali halide metal compound as a host material, and further contains, as an additive, a compound of a precious metal as a metal having lower ionization tendency than hydrogen (H), with the additive having a lower melting point than the host material.
Abstract:
A radiation image capturing apparatus includes a pixel array including conversion elements arranged in rows and columns on an optically transparent substrate, signal lines that outputs a signal generated by the conversion elements and that extends in a column direction, a first scintillator disposed near a first surface of the substrate, and a second scintillator disposed near a second surface of the substrate opposite the first surface. The conversion elements include first conversion elements and second conversion elements. A light shielding layer is disposed between the first scintillator and the second conversion elements such that an amount of light that is received by the second conversion elements from the first scintillator is smaller than that received by the first conversion elements. A number of columns of the conversion elements is equal to a number of the signal lines.
Abstract:
A radiation detection apparatus comprises a sensor panel including a plurality of sensor units which detect radiation and are arrayed, each of the plurality of sensor units comprising a pixel array including a plurality of pixels which detect light and are two-dimensionally arranged, a scintillator layer which converts radiation into light, and a first scintillator protective layer disposed to cover the scintillator layer, and the radiation detection apparatus further comprising a second scintillator protective layer disposed to cover the plurality of sensor units.
Abstract:
A radiation detection apparatus comprising, a sensor panel including sensor unit disposed on a plurality of photoelectric converters on a substrate, a first scintillator layer disposed on the sensor panel, and a second scintillator layer disposed on the first scintillator layer, wherein the first scintillator layer and the second scintillator layer respectively emit light beams having different wavelengths, and the sensor unit which includes a first photoelectric converter configured to detect the light beam emitted by the first scintillator layer, a first transistor configured to output a signal from the first scintillator layer, a second photoelectric converter configured to detect the light beam emitted by the second scintillator layer, and a second transistor configured to output a signal from the second scintillator layer, and individually convert the light beams having the different wavelengths into electrical signals.
Abstract:
A radiological imaging apparatus includes a first panel where a plurality of radiation detecting elements are arrayed on a first substrate, a second panel where a plurality of radiation detecting elements are arrayed on a second substrate, and a sheet-shaped adhesion part configured to adhere a second-panel side face of the first panel and a first-panel side face of the second panel to each other, so that the first panel and the second panel are overlaid on each other in planar view as to an upper face of the first substrate. The adhesion part is configured to maintain adhesion of the first panel and the second panel, while tolerating change in relative positions thereof in a planar direction parallel to the upper face of the first substrate.
Abstract:
A radiation imaging apparatus is provided. The apparatus includes a substrate in which conversion elements are arranged and which transmits light beams, a first scintillator arranged on a first surface side of the substrate, and a second scintillator arranged on a second surface side opposite to the first surface. The conversion elements include first conversion elements and second conversion elements. The first conversion elements are arranged so as to receive light beams from the first scintillator and the second scintillator. A light-shielding layer is arranged between the first scintillator and each of the second conversion elements so as to set light amounts of the second conversion elements from the first scintillator smaller than those of the first conversion elements from the first scintillator, and the second conversion elements are arranged to receive a light beam from the second scintillator.