Abstract:
A hydraulic system is disclosed. The hydraulic system may include a fluid source and an actuator having a first passage and a second passage. The hydraulic system may further include a pump having a first port connected to the first passage, a second port connected to the second passage, and a third port connected to the fluid source. The first and second passages may be connected to each other via the first and second ports, and the first passage and the low-pressure fluid source may be connected to each other via the first and third ports. They hydraulic system may further include a charge circuit fluidly connected to the first and second passages, and at least one damping control valve configured to selectively allow fluid from the pump to pass into the charge circuit to dampen pressure oscillations between the actuator and the pump.
Abstract:
A machine is disclosed. The machine can include a frame and ground engaging propulsion elements coupled with the frame. A hydraulically actuated implement system can be coupled with the frame, and can include a linkage configured to couple with an implement, a hydraulic actuator coupled with the linkage and the frame, and a ride control and downforce control circuit configured to implement a ride control mode and a downforce control mode. The ride control mode can be configured to maintain a pressure of hydraulic fluid in the hydraulic actuator at a ride control pressure, and the downforce control mode can be configured to maintain the pressure of hydraulic fluid in the hydraulic actuator at a downforce control pressure to oppose the weight of the linkage and the implement such that the implement engages a substrate with a predetermined down force pressure which is proportionate to the downforce control pressure.
Abstract:
A method for storing and reusing hydraulic energy in a machine is disclosed. The method includes transferring the hydraulic energy from an actuator to an upstream side of a motor pump via a first valve, during a normal mode. The method includes directing excess hydraulic energy from a downstream side of the motor pump to an accumulator by opening an accumulator valve and closing a bypass valve, during an energy saving mode. The method includes retrieving stored hydraulic energy from the accumulator to the upstream side of the motor pump by opening the accumulator valve, during an energy discharging mode.
Abstract:
A hydraulic control system for a machine is provided. The hydraulic control system includes a fluid reservoir, a pump motor and an accumulator. The pump motor is configured to provide pressurized fluid and to receive fluid to provide a power output. The hydraulic control system further includes a hydraulic actuator having a first and a second chamber, a first valve, a regenerative valve, and a controller. The controller is in communication with the first valve and the regenerative valve to selectively actuate the regenerative valve to allow flow of a first portion of the fluid from the first chamber to the second chamber. The controller is further configured to selectively actuate the first valve to allow flow of a second portion of the fluid from the first chamber through the pump motor to provide the power output to a shaft of a power source.
Abstract:
A method for storing and reusing hydraulic energy in a machine is disclosed. The method includes transferring the hydraulic energy from an actuator to an upstream side of a motor pump via a first valve, during a normal mode. The method includes directing excess hydraulic energy from a downstream side of the motor pump to an accumulator by opening an accumulator valve and closing a bypass valve, during an energy saving mode. The method includes retrieving stored hydraulic energy from the accumulator to the upstream side of the motor pump by opening the accumulator valve, during an energy discharging mode.
Abstract:
A hydraulic control system for a machine is provided. The hydraulic control system includes a fluid reservoir, a pump motor and an accumulator. The pump motor is configured to provide pressurized fluid and to receive fluid to provide a power output. The hydraulic control system further includes a hydraulic actuator having a first and a second chamber, a first valve, a regenerative valve, and a controller. The controller is in communication with the first valve and the regenerative valve to selectively actuate the regenerative valve to allow flow of a first portion of the fluid from the first chamber to the second chamber. The controller is further configured to selectively actuate the first valve to allow flow of a second portion of the fluid from the first chamber through the pump motor to provide the power output to a shaft of a power source.
Abstract:
A machine is disclosed. The machine can include a frame and ground engaging propulsion elements coupled with the frame. A hydraulically actuated implement system can be coupled with the frame, and can include a linkage configured to couple with an implement, a hydraulic actuator coupled with the linkage and the frame, and a ride control and downforce control circuit configured to implement a ride control mode and a downforce control mode. The ride control mode can be configured to maintain a pressure of hydraulic fluid in the hydraulic actuator at a ride control pressure, and the downforce control mode can be configured to maintain the pressure of hydraulic fluid in the hydraulic actuator at a downforce control pressure to oppose the weight of the linkage and the implement such that the implement engages a substrate with a predetermined down force pressure which is proportionate to the downforce control pressure.