Abstract:
The present disclosure generally relates to a device having a capacitance sensor that detects a change in capacitance that occurs in the antenna whenever the antenna is in close proximity to a user's hand and/or head. Following detection of the capacitance change, the capacitance of the antenna may be changed by using a variable capacitor that is coupled to the sensor through a controller.
Abstract:
The present disclosure generally relates to any device capable of wireless communication, such as a mobile telephone or wearable device, having one or more antennas. After measuring reflection coefficients of a device at three different DVC states, the reflection coefficient for all other DVC states can be calculated. Thus, based solely upon three reflection coefficient measurements, the antenna can be tuned to adjust for any changes in impedance at the antenna.
Abstract:
The present invention generally relates to small antennas suitable for mobile devices operating in the high frequency and radio frequency bands in the range 100 MHz to 5 GHz. The antennas may be coupled to a DVC such as a MEMS DVC. The antenna may be coupled to a printed circuit board disposed inside of the mobile device, such as a mobile phone or smart phone.
Abstract:
The present disclosure generally relates to any device capable of wireless communication, such as a mobile telephone or wearable device, having one or more antennas. The antenna has a structure with multiple resonances to cover all commercial wireless communications bands from a single antenna with one feed connection to the main radio system. The antenna is usable where there are two highly efficient, closely spaced resonances in the lower part of the frequency band. One of those resonances can be adjusted in real time by using a variable reactance attached to the radiator while the other resonance is fixed.