Abstract:
There is a method for generating a final image of a subsurface of the earth. The method includes receiving measured seismic data d of the subsurface; selecting an objective function E that is function of a reflectivity r of the subsurface; and calculating, in a processor, the reflectivity r based on the measured seismic data d, the objective function E, simulated data {tilde over (d)}, a modeling operator M from a reverse time demigration (RTDM) process and an imaging operator MT from a reverse time migration (RTM) process.
Abstract:
Computing device and method for processing seismic traces to produce an image of a subsurface area. The method includes receiving a series of seismic traces related to the subsurface area and recorded by one or more seismic receivers, wherein the one or more seismic sources are originally generated by a source; applying a phase encoding function to the series of seismic traces, at least a portion of said seismic traces comprise signals reflected by geological interfaces of the subsurface area; applying a 3 dimensional (3D) harmonic-source reverse time migration of the series of seismic traces encoded with the phase encoding function; computing a forward wavefield by solving a first wave equation; computing a backward wavefield by solving a second wave equation; and cross-correlating the forward wavefield with the backward wavefield to generate an image of the subsurface.
Abstract:
A method for processing seismic data includes receiving seismic data and a velocity model (c(x)) for a plurality of locations (x), scaling a dimension of the seismic data according to the velocity model (c(x)) to provide a velocity normalized seismic data, and generating a final image (S(x)) of the subsurface using the velocity normalized seismic data. The velocity normalized seismic data may be a reverse-time migration image (I(x,ξ)) corresponding to the plurality of locations (x) and a plurality of propagation distance offsets (ξ). The method may also include transforming the reverse-time migration image (I(x,ξ)) for the plurality of selected positions (x) to a wavenumber domain to provide velocity normalized wavenumber data (I(k,ψ)) and suppressing data components corresponding to non-physical or undefined reflection angles to provide enhanced wavenumber data (I′(k,ψ)) and using the enhanced wavenumber data (I′(k,ψ)) to generate the final image (S(x)). A corresponding apparatus is also disclosed herein.