Abstract:
Disclosed herein are certain embodiments of a novel chemical synthesis route for lithium ion battery applications. Accordingly, various embodiments are focused on the synthesis of a new active material using NMC (Lithium Nickel Manganese Cobalt Oxide) as the precursor for a phosphate material having a layered crystal structure. Partial phosphate generation in the layer structured material stabilizes the material while maintaining the large capacity nature of the layer structured material.
Abstract:
The disclosure describes an exemplary binding layer formed on Aluminum (Al) substrate that binds the substrate with a coated material. Additionally, an extended form of the binding layer is described. By making a solution containing Al-transition metal elements-P—O, the solution can be used in slurry making (the slurry contains active materials) in certain embodiments. The slurry can be coated on Al substrate followed by heat treatment to form a novel electrode. Alternatively, in certain embodiments, the solution containing Al-transition metal elements-P—O can be mixed with active material powder, after heat treatment, to form new powder particles bound by the binder.
Abstract:
Disclosed herein are certain embodiments of a novel chemical synthesis route for lithium ion battery applications. Accordingly, various embodiments are focused on the synthesis of a new active material using NMC (Lithium Nickel Manganese Cobalt Oxide) as the precursor for a phosphate material having a layered crystal structure. Partial phosphate generation in the layer structured material stabilizes the material while maintaining the large capacity nature of the layer structured material.
Abstract:
An exemplary embodiment of a synthesis method includes the following acts or steps: providing LiMn2O4 material as a precursor; leaching Mn from the LiMn2O4 material using an acid to form a synthesized solution; adding carbonaceous material to the synthesized solution; adding phosphoric acid to the synthesized solution with carbonaceous material to form MnPO4 composite material; and adding Li containing compound to the MnPO4 composite material to form LiMnPO4 composite material.