Abstract:
Methods and systems for building and maintaining model(s) of a physical process are disclosed. One method includes receiving training data associated with a plurality of different data sources, and performing a clustering process to form one or more clusters. For each of the one or more clusters, the method includes building a data model based on the training data associated with the data sources in the cluster, automatically performing a data cleansing process on operational data based on the data model, and automatically updating the data model based on updated training data that is received as operational data. For data sources excluded from the clusters, automatic building, data cleansing, and updating of models can also be applied.
Abstract:
Methods and systems for reconstructing data are disclosed. One method includes receiving a selection of one or more input data streams at a data processing framework, and receiving a definition of one or more analytics components at the data processing framework. The method further includes applying a dynamic principal component analysis to the one or more input data streams, and detecting a fault in the one or more input data streams based at least in part on a prediction error and a variation in principal component subspace generated based on the dynamic principal component analysis. The method also includes reconstructing data at the fault within the one or more input data streams based on data collected prior to occurrence of the fault.
Abstract:
Methods and systems for building and maintaining model(s) of a physical process are disclosed. One method includes receiving training data associated with a plurality of different data sources, and performing a clustering process to form one or more clusters. For each of the one or more clusters, the method includes building a data model based on the training data associated with the data sources in the cluster, automatically performing a data cleansing process on operational data based on the data model, and automatically updating the data model based on updated training data that is received as operational data. For data sources excluded from the clusters, automatic building, data cleansing, and updating of models can also be applied.
Abstract:
A method for monitoring a control of a parameter of one or more devices or systems in an oil or gas production site includes receiving process data, the process data being a result of the control of the parameter of the one or more devices or systems in the production site; smoothing the process data using a polynomial filter while preserving features of the process data to obtain smoothed data; and applying a pattern recognition algorithm to the smoothed data to determine whether there is a malfunction condition in the one or more devices or systems.
Abstract:
A computer-implemented method for reconstructing data includes receiving a selection of one or more input data streams at a data processing framework. The method can include determining existence of a fault in the input data stream(s). This determination can be based on receiving a definition of one or more analytics components at the data processing framework and applying a dynamic principal component analysis (DPCA) to the input data streams. Detection of the fault can be based at least in part on a prediction error and a variation in principal component subspace generated based on the DPCA. Detection of the fault can also be based on performing a wavelet transform to generate a set of coefficients defining the data stream, the set of coefficients including one or more coefficients representing a high frequency portion of data included in the data stream. The method can include reconstructing data at the fault.
Abstract:
A method for monitoring a control of a parameter of one or more devices or systems in an oil or gas production site includes receiving process data, the process data being a result of the control of the parameter of the one or more devices or systems in the production site; smoothing the process data using a polynomial filter while preserving features of the process data to obtain smoothed data; and applying a pattern recognition algorithm to the smoothed data to determine whether there is a malfunction condition in the one or more devices or systems.
Abstract:
A method for extracting a set of principal time series data of dynamic latent variables. The method includes detecting, by a plurality of sensors, dynamic samples of data each corresponding to one of a plurality of original variables. The method also includes analyzing, using a controller, the dynamic samples of data to determine a plurality of latent variables that represent variation in the dynamic samples of data. The method also includes selecting, by the controller, at least one inner latent variable that corresponds to at least one of the plurality of original variables. The method also includes estimating an estimated current value of the at least one inner latent variable based on previous values of the at least one inner latent variable.
Abstract:
A method for extracting a set of principal time series data of dynamic latent variables. The method includes detecting, by a plurality of sensors, dynamic samples of data each corresponding to one of a plurality of original variables. The method also includes analyzing, using a controller, the dynamic samples of data to determine a plurality of latent variables that represent variation in the dynamic samples of data. The method also includes selecting, by the controller, at least one inner latent variable that corresponds to at least one of the plurality of original variables. The method also includes estimating an estimated current value of the at least one inner latent variable based on previous values of the at least one inner latent variable