摘要:
A measurement apparatus includes a lamp mount including a first mount and a second mount. The first mount has a first cavity to mount an observation module. The second mount has a second cavity to mount an image capture module. The measurement apparatus further includes a plurality of light modules mounted on an undersurface of the lamp mount. The second mount is disposed with an included angle relative to a first axis of the first cavity so that a second axis of the second cavity and the first axis converge on a point. The undersurface of the lamp mount is concave so that light from the light modules tilts toward the first axis, and the light and the first axis also converge on the point.
摘要:
A scanner obtains point-cloud data of adjoining parts of a product. A computing device reads two point-clouds from the point-cloud data, fits two or more lines according to the two point-clouds, selects two lines that have the same ascending direction from the two or more lines, and creates a two-dimensional coordinates system base on the two selected lines. The computing device determines a highest point in each of the two point-clouds based on distances from each point in either of the point-clouds to a corresponding selected line, and determines two nearest points in the two point-clouds. A difference between Y coordinates of the two highest points is determined as a gap-height of two adjoining parts of the product, and a difference between X coordinates of the two nearest points is determined as a gap-width between two adjoining parts.
摘要:
In an electronic device, an image point A on an image of an object is selected. A spectral confocal sensor is controlled to move to a position above a measuring point A′ on the object, where the measuring point A′ corresponds to the image point A, and a Z-coordinate of the measuring point A′ is computed using the spectral confocal sensor. A focal position of the measuring point A′ is computed according to the Z-coordinate of the measuring point A′, and a CCD lens is controlled to move to the focal position. The Z-coordinate of the measuring point A′ is stored into a storage unit of the electronic device.
摘要:
A light source is configured to be mounted to a vision measuring instrument that includes a primary image capture unit capturing an image of an object to be measured, and an auxiliary image capture unit providing a means to aim the primary image capture unit at a determined position. The light source includes a main body defining a through hole for receiving the primary image capture unit, and a mounting hole for readily mounting an auxiliary image capture unit. A luminescent surface is formed on an inner wall bounding the through hole of the main body. A number of light-emitting diodes (LEDs) is disposed on the luminescent surface.
摘要:
A computing device connects with a vision measuring machine (VMS). Then the computing device generates a one time password (OTP). A size of the OTP, the OTP are stored in a predefined file. The computing device obtains a size of measurement program codes of the VMS. The size of the OTP and the size of the measurement program codes are stored in the predefined file. The measurement program codes are encrypted by the OTP. If the measurement data includes image data of an object which is measured by the VMS, the computing device stores the encrypted program codes, a type of the image data, image data, and a size of the image data in the predefined file.
摘要:
A computing device and method for programming a measuring program into the device. The system and method divide an ideal image into one or more sections and obtains the attributes of each of the sections. The system and method measure dimensions from a desired position located in each of the sections based on a coordinate system created for each of the sections, and obtains ideal measurements from the desired position. The system and method generate a measuring program which is capable of executing the steps mentioned above.
摘要:
A method and system for computing and displaying a roundness error of an object specifies different colors that respectively represents an error range of points. The method and system receives a point cloud of the object and fits a circle based on the point cloud. The method and system computes an error of each point in the point cloud by computing a distance between the each point and the circle, colorizes the points in the point cloud according to the errors and the specified colors, and generates and outputting a graphic roundness error analysis report.
摘要:
In a method for verifying manufacturing accuracy, a point cloud of a workpiece is read. A first determined point is determined according to the first point of the point cloud and a second determined point is determined according to the final point of the point cloud. A first line, a second line, and a third line are all located by respectively connecting the first point and the first determined point, the final point and the second determined point, and the first determined point and the second determined point. Qualification of the workpiece is determined by measuring a first angle of the first line and the third line, a second angle of the second line and the third line, a first distance between the first determined point and the second line, and a second distance between the second determined point and the first line.
摘要:
A system and method for automatically focusing an optical lens controls the light generated by a light-emitting device of an image measuring machine to penetrate a glass sheet, so as to project a picture of the glass sheet onto an object. The system and method further moves an optical lens along a Z-axis of the image measuring machine to capture one or more digital images of the object, and computes a definition value of each captured digital image. Furthermore, the system and method obtains a focus position corresponding to the highest definition value of the captured digital image.
摘要:
An image measuring device comprises a storage, a processor, an acquiring module, a positioning module and a determining module. The acquiring module acquires an image of a production object by scanning the production object. The positioning module positions the image of the production object in a coordinate plane according to predefined parameters and acquiring the edge of the image of the production object. The determining module determines whether the difference between the positioned image and the predefined parameters is over a tolerance, wherein the acquiring module, the positioning module and the determining module are stored in the storage and controlled by the processor.