Abstract:
An example method is provided in accordance with one embodiment and includes identifying distances for a sub-tree of a leaf node of a plurality of leaf nodes in a network. The method can also include applying the distances for the sub-tree of the leaf node to a plurality of root nodes connected to the leaf node. Additionally, the method can include establishing a plurality of shortest path distances for the plurality of root nodes using the distances for the sub-tree.
Abstract:
An example method for convergence of multi-destination traffic in a network environment is provided and includes receiving a first type-length-value (TLV) message from a true broadcast root in a Transparent Interconnection of Lots of Links (TRILL) network, where the first TLV message indicates a first subset of multi-destination trees in the TRILL network, receiving a second TLV message from the true broadcast root indicating a second subset of multi-destination trees in the TRILL network, such that a union of the first subset and the second subset indicates at least one inactive multi-destination tree in the TRILL network, and deleting the inactive tree from a hash table of active trees.
Abstract:
A method is provided in one example and includes broadcasting a switching node identifier associated with a first link-state protocol enabled switching node to a plurality of link-state protocol enabled switching nodes. The plurality of link-state protocol enabled switching nodes are in communication with one another by a link-state protocol cloud. The method further includes broadcasting a priority associated with the first link-state protocol enabled switching node to the plurality of link-state protocol enabled switching nodes. The method further includes broadcasting connectivity information of the first link-state protocol enabled switching node to the plurality of link-state protocol enabled switching nodes using the link-state protocol cloud. The connectivity information includes connectivity of the first link-state protocol enabled switching node with at least one spanning tree protocol enabled switching node.
Abstract:
A methodology is described for achieving efficient forwarder appointments. Such efficient appointment may provide an equal load on each participating routing bridge in the TRILL LAN. Load may be viewed as the number of VLANs for which a given node is an appointed forwarder. Furthermore, efficient appointment may be executed with a minimum of traffic disruption. Minimal disruption may be ensured by forwarder appointments by moving a minimum number of VLANs to ensure an equal load on each participating routing bridge.
Abstract:
The proposed methodology enables finding the most efficient roots in the network to carry multicast traffic, while further providing a theoretical basis for such selection. It guarantees the minimum expected delivery cost for multicast frames in the absence of any knowledge about the source and receivers.
Abstract:
A methodology is described for achieving efficient forwarder appointments. Such efficient appointment may provide an equal load on each participating routing bridge in the TRILL LAN. Load may be viewed as the number of VLANs for which a given node is an appointed forwarder. Furthermore, efficient appointment may be executed with a minimum of traffic disruption. Minimal disruption may be ensured by forwarder appointments by moving a minimum number of VLANs to ensure an equal load on each participating routing bridge.
Abstract:
A methodology is described for achieving efficient forwarder appointments. Such efficient appointment may provide an equal load on each participating routing bridge in the TRILL LAN. Load may be viewed as the number of VLANs for which a given node is an appointed forwarder. Furthermore, efficient appointment may be executed with a minimum of traffic disruption. Minimal disruption may be ensured by forwarder appointments by moving a minimum number of VLANs to ensure an equal load on each participating routing bridge.
Abstract:
This disclosure describes techniques for collecting network parameter data for network switches and/or physical servers and provisioning virtual resources of a service on physical servers based on network resource availability. The network parameter data may include network resource availability data, diagnostic constraint data, traffic flow data, etc. The techniques include determining network switches that have an availability of network resources to support a virtual resource on a connected physical server. A scheduler may deploy virtual machines to particular servers based on the network parameter data in lieu of, or in addition to, the server utilization data of the physical servers (e.g., CPU usage, memory usage, etc.). In this way, a virtual resource may be deployed to a physical server that has an availability of the server resources, but also is connected to a network switch with the availability of network resources to support the virtual resource.
Abstract:
The proposed methodology enables finding the most efficient roots in the network to carry multicast traffic, while further providing a theoretical basis for such selection. It guarantees the minimum expected delivery cost for multicast frames in the absence of any knowledge about the source and receivers.
Abstract:
A methodology is described for achieving efficient forwarder appointments. Such efficient appointment may provide an equal load on each participating routing bridge in the TRILL LAN. Load may be viewed as the number of VLANs for which a given node is an appointed forwarder. Furthermore, efficient appointment may be executed with a minimum of traffic disruption. Minimal disruption may be ensured by forwarder appointments by moving a minimum number of VLANs to ensure an equal load on each participating routing bridge.