Abstract:
A spreader arrangement for an agricultural harvester includes a windrow chute having a first position for building a windrow in which the chute angles downwardly from a proximal edge to a distal edge of the chute, and a second position for cleanout of the chute in which the chute angles downwardly from the distal edge to the proximal edge of the chute. Adjustment from the first position to the second position and back to the first position can occur automatically when the combine is operating but not currently harvesting, such as during the time period between when a harvesting swath is completed and the next harvesting swath is commenced, so that accumulated crop residue material can be dislodged from the windrow chute without disrupting harvesting or the windrow building process.
Abstract:
A spreader arrangement for an agricultural harvester includes a pair of spreader discs, at least one cover plate and a windrow chute. The spreader discs are generally horizontally arranged and rotatable in a counter rotating manner. Each cover plate is positioned at a location above a respective spreader disc, and is operable to inhibit a flow of crop material to the respective spreader disc when positioned above the respective spreader disc. The windrow chute has an entrance end positioned below the pair of cover plates and above the pair of spreader discs, whereby crop material is discharged from the top of the cover plates into the windrow chute.
Abstract:
A spreader arrangement for an agricultural harvester includes a frame, a pair of spreader discs carried by the frame, and a material deflector. The spreader discs are generally horizontally arranged and rotatable in a counter rotating manner. The material deflector includes at least one deflector arm and a vertical pivoting mechanism interconnecting the at least one deflector arm with the frame.
Abstract:
A chopper assembly for a crop residue distribution system of an agricultural combine may include a rotor shaft extending lengthwise along a rotational axis between a first end and a second end. The chopper assembly may also include a plurality of flail blades pivotally coupled to the rotor shaft. Each flail blade may be configured to pivot relative to the rotor shaft about a pivot axis, with the flail blades being spaced apart axially from one another between the first and second ends of the rotor shaft. In addition, the chopper assembly may include a plurality of spring tines coupled to the rotor shaft, with the spring tines being spaced apart from one another between the first and second ends of the rotor shaft.
Abstract:
A spreader arrangement for an agricultural harvester includes a windrow chute having a first position for building a windrow in which the chute angles downwardly from a proximal edge to a distal edge of the chute, and a second position for cleanout of the chute in which the chute angles downwardly from the distal edge to the proximal edge of the chute. Adjustment from the first position to the second position and back to the first position can occur automatically when the combine is operating but not currently harvesting, such as during the time period between when a harvesting swath is completed and the next harvesting swath is commenced, so that accumulated crop residue material can be dislodged from the windrow chute without disrupting harvesting or the windrow building process.
Abstract:
An agricultural vehicle includes a chassis; a header carried by the chassis and configured to cut crop material; a chopper carried by the chassis downstream of the header; and a windrow assembly carried by the chassis downstream of the chopper. The windrow assembly includes a windrow chute defining a leading edge downstream from the chopper and a trailing edge downstream from the leading edge; and a roller associated with the leading edge to form an active leading edge of the windrow chute during rotation.
Abstract:
An agricultural harvester includes a frame; a threshing and separating system carried by the frame; a cleaning system carried by the frame; a mounting surface carried by the frame; and a residue system including a chopper carried by the frame and supplied with crop material from the threshing and separating system and/or the cleaning system. The chopper includes a chopper frame mounted to the mounting surface and having at least one shaft opening formed through; a chopper shaft held in the at least one shaft opening that is configured to rotate and is carried by the frame independently of the chopper frame; at least one rotating knife carried by the chopper shaft; and at least one stationary knife held in the chopper frame.
Abstract:
An agricultural harvester includes a frame; a threshing and separating system carried by the frame; a cleaning system carried by the frame; a mounting surface carried by the frame; and a residue system including a chopper carried by the frame and supplied with crop material from the threshing and separating system and/or the cleaning system. The chopper includes a chopper frame mounted to the mounting surface and having at least one shaft opening formed through; a chopper shaft held in the at least one shaft opening that is configured to rotate and is carried by the frame independently of the chopper frame; at least one rotating knife carried by the chopper shaft; and at least one stationary knife held in the chopper frame.
Abstract:
An agricultural harvester includes a grain processing section having a sieve assembly. The sieve assembly is connected to mechanism for producing a side to side oscillation by a single cast structural link having an input through slotted openings to the drive mechanism to accommodate misalignment. The link has vertical and horizontal flanges connected to a main body for interconnection between the right and left frames and structural supports interconnecting the right and left frames. The main body of the link extends through a slot in a rubber wall to accommodate the movement and seal against loss of grain.
Abstract:
A spreader arrangement for an agricultural harvester includes a frame, a pair of spreader discs carried by the frame, and a material deflector. The spreader discs are generally horizontally arranged and rotatable in a counter rotating manner. The material deflector includes at least one deflector arm and a vertical pivoting mechanism interconnecting the at least one deflector arm with the frame.