Abstract:
Disclosed is a stent graft, including a graft body, a sealing stent at the proximal end of the graft body and completely overlapped by the graft body, and a diameter reducing loop arrangement. The sealing stent includes proximal apices at a proximal end thereof and distal apices at a distal end thereof. The diameter reducing loop arrangement includes a loop element. The loop element includes a first end, a second end, and a strand section from the first end to the second end. The first end is attached to the distal end of the sealing stent. The loop element is configured to pass circumferentially around the distal end of the sealing stent and have a release wire pass through a loop at the second end. The diameter reducing loop arrangement is configured to constrict the distal apices of the sealing stent and cause the sealing stent to adopt a substantially conical or frustoconical shape.
Abstract:
A stent graft for deployment in a curved lumen such as the aortic or thoracic arch comprises a constraining mechanism at its proximal end. A stent provided at the proximal end of the stent graft includes loops of material that co-operate with restraining wires that extend between a central guide wire carrier and a restraining wire cannula. The constraining mechanism acts to maintain the proximal stent constrained at both the proximal and distal ends of the proximal stent. The proximal stent is thus allowed to expand after expansion of the remainder of the stent graft during deployment. In an embodiment, the constraining mechanism acts to constrain two adjacent struts of the proximal stent at three points radially therearound, at the proximal end of the stent and at the distal end of the stent. The proximal stent may then overlap with the interior of an adjacent stent at an inner part of a curved vessel.
Abstract:
A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.
Abstract:
A stent graft (40) for treating Type-A dissections in the ascending aorta (22) is provided with a plurality of diameter reducing suture loops (56-60) operable to constrain the stent graft during deployment thereof in a patient's aorta. The diameter reducing loops (56-60) allow the stent graft (40) to be partially deployed, in such a manner that its location can be precisely adjusted in the patient's lumen. In this manner, the stent graft can be placed just by the coronary arteries (26, 28) with confidence that these will not be blocked. The stent graft (40) is also provided with proximal and distal bare stents (44,52) for anchoring purposes.
Abstract:
An endoluminal prosthesis that includes a support structure comprising a curvilinear portion having a first strut and a second strut that meet at an apex. Disposed on the support structure is an anchor with an anchor body and one or more barbs extending outwardly from the anchor body and where the anchor body comprises a multi-filar tube fits at least partially about, and conforms to the first strut, second strut, and the apex.
Abstract:
The disclosure provides a filter apparatus and method of filtering in a body vessel. The filter apparatus comprises a filter unit and an expandable introducer designed to deliver the filter unit to the target filtering site. The filter unit attaches to the expandable introducer via a plurality of anchors on the filter unit. The expandable introducer delivers and presses the anchors to the vessel wall during implantation. After implantation, the filter unit exerts minimal or about zero radial force against the vessel wall.
Abstract:
A system for deploying a stent graft includes a stent graft. The stent graft has a tubular structure and includes first and second end stents and at least one stent between the first and second end stents. The system also includes a plurality of constraining mechanisms arranged along the length of the stent graft constraining the stents of the stent graft, and an actuation mechanism configured to release the plurality of constraining mechanisms in order from the first end to the second end of the stent graft and circumferentially sequentially from about the stents.
Abstract:
An endoluminal prosthesis that includes a support structure comprising a curvilinear portion having a first strut and a second strut that meet at an apex. Disposed on the support structure is an anchor with an anchor body and one or more barbs extending outwardly from the anchor body and where the anchor body comprises a multi-filar tube fits at least partially about, and conforms to the first strut, second strut, and the apex.
Abstract:
A vascular occluder includes a frame (10) having a generally cylindrical body portion (12), first and second end conical portions (14, 16) and first and second extremities (18, 20). Located within the fame (10) is a fibrous barrier (28) which provides rapid occlusion. The extremities (18, 20) are coupled by a coil spring (22) which acts to pull the extremities (18, 22) towards one another and thereby to cause longitudinal contraction an consequential radial expansion of the frame (10). The coil spring (22) ensures rapid and reliable deployment of the occluder in a patient's vessel. The occluder also can be compressed to a narrow diameter for deployment by means of narrow diameter sheaths.
Abstract:
A system for deploying a stent graft includes a stent graft. The stent graft has a tubular structure and includes first and second end stents and at least one stent between the first and second end stents. The system also includes a plurality of constraining mechanisms arranged along the length of the stent graft constraining the stents of the stent graft, and an actuation mechanism configured to release the plurality of constraining mechanisms in order from the first end to the second end of the stent graft and circumferentially sequentially from about the stents.