Abstract:
The disclosure relates to a tapered stent and flexible prosthesis. The stent has a first longitudinal region and a second longitudinal region. The second region is substantially parallel to and spaced axially apart from the first region. A plurality of struts is disposed intermediate the first region and the second region and circumferentially connects the first region and the second region. The first region has a longitudinal length that is greater than the second region longitudinal length. The struts have varying longitudinal lengths that gradually decrease from the first region to the second region. The flexible prosthesis comprises at least two alternating tapered stents.
Abstract:
An endoluminal prosthesis that includes a support structure comprising a curvilinear portion having a first strut and a second strut that meet at an apex. Disposed on the support structure is an anchor with an anchor body and one or more barbs extending outwardly from the anchor body and where the anchor body comprises a multi-filar tube fits at least partially about, and conforms to the first strut, second strut, and the apex.
Abstract:
There are disclosed apparatus and methods for treating tissue by delivering at least one therapeutic agent into the tissue. In one embodiment, the apparatus comprises a catheter and a balloon member disposed on a distal region of the catheter. A plurality of pockets are disposed on the balloon member, and a plurality of needles are associated with each of the plurality of pockets. The plurality of needles are configured to engage tissue when the balloon is in the inflated state, and further are configured to disperse a therapeutic agent from an associated pocket into the tissue when the balloon is in the inflated state. A first needle of the plurality of needles may comprise a length that is different than a second needle, permitting the delivery of first and second therapeutic agents to different depths within the tissue.
Abstract:
There are disclosed apparatus and methods for treating tissue by delivering at least one therapeutic agent into the tissue. In one embodiment, the apparatus comprises a catheter and a balloon member disposed on a distal region of the catheter. A plurality of pockets are disposed on the balloon member, and a plurality of needles are associated with each of the plurality of pockets. The plurality of needles are configured to engage tissue when the balloon is in the inflated state, and further are configured to disperse a therapeutic agent from an associated pocket into the tissue when the balloon is in the inflated state. A first needle of the plurality of needles may comprise a length that is different than a second needle, permitting the delivery of first and second therapeutic agents to different depths within the tissue.
Abstract:
An endoluminal prosthesis that includes a support structure comprising a curvilinear portion having a first strut and a second strut that meet at an apex. Disposed on the support structure is an anchor with an anchor body and one or more barbs extending outwardly from the anchor body and where the anchor body comprises a multi-filar tube fits at least partially about, and conforms to the first strut, second strut, and the apex.
Abstract:
A method of forming a surface structure of a component of a medical devices includes forming a fatigue-resistant portion, which entails forming a first layer comprising a transition metal selected from the group consisting of Ta, Nb, Mo, V, Mn, Fe, Cr, Co, Ni, Cu, and Si on at least a portion of a surface of the component, where the surface comprises a nickel-titanium alloy, and alloying the transition metal of the first layer with the nickel-titanium alloy of the surface. The method further includes forming a rough outer surface of the fatigue-resistant portion, where the rough outer surface is adapted for adhesion of a material thereto.
Abstract:
A method of forming a surface structure of a component of a medical devices includes forming a fatigue-resistant portion, which entails forming a first layer comprising a transition metal selected from the group consisting of Ta, Nb, Mo, V, Mn, Fe, Cr, Co, Ni, Cu, and Si on at least a portion of a surface of the component, where the surface comprises a nickel-titanium alloy, and alloying the transition metal of the first layer with the nickel-titanium alloy of the surface. The method further includes forming a rough outer surface of the fatigue-resistant portion, where the rough outer surface is adapted for adhesion of a material thereto.
Abstract:
The disclosure relates to a tapered stent and flexible prosthesis. The stent has a first longitudinal region and a second longitudinal region. The second region is substantially parallel to and spaced axially apart from the first region. A plurality of struts is disposed intermediate the first region and the second region and circumferentially connects the first region and the second region. The first region has a longitudinal length that is greater than the second region longitudinal length. The struts have varying longitudinal lengths that gradually decrease from the first region to the second region. The flexible prosthesis comprises at least two alternating tapered stents.