Abstract:
A data compression/decompression methodology and system stores in a compression-side dictionary the data that has been transmitted and additionally applies to such data in the compression-side dictionary a status of being “invalid” for purposes of use as a reference in data compression until an acknowledgement signal has been received from the decompression side indicating that such data has been received. Once the compression side has received the acknowledgement signal indicating that the data in the form of a compressed data packet has been received on the decompression side, the status is changed from being “invalid” into being “valid”, i.e., into being usable as reference data for use in compressing further data elements in the data stream. Each data packet includes a stream index which is representative of the memory location in the compression-side dictionary where the first data element of the uncompressed data set of the data packet is stored.
Abstract:
Devices, networks, systems and methods for coordinating industrial control and monitoring communications on multi-path radio frequency transmission mesh networks include establishing path metrics allowing a respective comparison of a plurality of available communication paths between neighboring radios communicating in the mesh network. Replies to route requests may be delayed based on the path metrics of available paths for message transmission to ensure that the best available connection routes through the mesh network can be understood and utilized.
Abstract:
Systems and method for self-organizing mesh networks of industrial radio devices include identifying and reporting neighboring radio devices and active devices with each radio at the network nodes. The reporting, which is collected by a monitoring device separately provided from the radio devices in the network, facilitates graphical representations of communication routes and current status as active and inactive for review by network administrators at a user interface.
Abstract:
Systems and method for self-organizing mesh networks of industrial radio devices include identifying and reporting neighboring radio devices and active devices with each radio at the network nodes. The reporting, which is collected by a monitoring device separately provided from the radio devices in the network, facilitates graphical representations of communication routes and current status as active and inactive for review by network administrators at a user interface.
Abstract:
A data compression/decompression methodology and system stores in a compression-side dictionary the data that has been transmitted and additionally applies to such data in the compression-side dictionary a status of being “invalid” for purposes of use as a reference in data compression until an acknowledgement signal has been received from the decompression side indicating that such data has been received. Once the compression side has received the acknowledgement signal indicating that the data in the form of a compressed data packet has been received on the decompression side, the status is changed from being “invalid” into being “valid”, i.e., into being usable as reference data for use in compressing further data elements in the data stream. Each data packet includes a stream index which is representative of the memory location in the compression-side dictionary where the first data element of the uncompressed data set of the data packet is stored.
Abstract:
Link metrics for communication paths in multi-hop wireless mesh networks of industrial radio device are determined based on signal strength and traffic level performance of each link in the communication paths. A path metric is determined from the link metrics and path metrics are compared and utilized for optimal routing of messages through the network.
Abstract:
Link metrics for communication paths in multi-hop wireless mesh networks of industrial radio device are determined based on signal strength and traffic level performance of each link in the communication paths. A path metric is determined from the link metrics and path metrics are compared and utilized for optimal routing of messages through the network.
Abstract:
Devices, networks, systems and methods for coordinating industrial control and monitoring communications on multi-path radio frequency transmission mesh networks include establishing path metrics allowing a respective comparison of a plurality of available communication paths between neighboring radios communicating in the mesh network. Replies to route requests may be delayed based on the path metrics of available paths for message transmission to ensure that the best available connection routes through the mesh network can be understood and utilized.