Abstract:
A method of manufacturing optical fiber in an optical fiber production system is provided. The method includes the providing a draw furnace operatively coupled to a slow cooling device along a draw pathway, drawing the optical fiber from an optical fiber preform in the draw furnace and along the draw pathway, heat treating the optical fiber in the slow cooling device positioned along the draw pathway, the slow cooling device comprising an inlet, an outlet, and a process tube extending between the inlet and the outlet, and selecting an opening size of an outlet nozzle operatively coupled to the outlet based on a draw speed of the optical fiber.
Abstract:
An apparatus for redirecting a glass ribbon assembly from a first glass conveyance path to a second glass conveyance path. The apparatus includes a glass ribbon assembly source for providing the glass ribbon assembly including a flexible glass substrate that includes a first surface and a second surface that extend between a first edge and a second edge, first and second handling tabs affixed to the flexible glass substrate edges, and a primary roll member located downstream of the glass ribbon assembly source. The first glass conveyance path extends from the glass ribbon assembly source to the primary roll member, and the second glass conveyance path extends from the primary roll member in a downstream direction. Contact surfaces of the primary roll member are tangential to the first and second glass conveyance paths, and the second glass conveyance path is non-planar with the first glass conveyance path.
Abstract:
Apparatuses and methods for processing optical fiber preforms are disclosed. According to one aspect, an apparatus generally includes a furnace body and a muffle disposed within the furnace body. A space between the muffle and the furnace body defines a first interior volume. The muffle defines a second interior volume sealed from the first interior volume. An annulus gas is supplied to the first interior volume and a process gas is supplied to the second interior volume. A differential pressure gauge is coupled to the interior volumes. A flow controller is coupled to at least one of the gas sources and to the differential pressure gauge. The flow controller receives a differential pressure signal from the differential pressure gauge and adjusts a flow of a gas such that the pressure differential between the first interior volume and the second interior volume is minimized.
Abstract:
Apparatuses and methods for processing an optical fiber preform are disclosed. According to one aspect, an apparatus may generally include a muffle defining an interior volume enclosed by at least one sidewall and a handle assembly for supporting the optical fiber preform in the muffle. The handle assembly may be removably coupled to the muffle and extend into the interior volume. At least one baffle may be positioned in the interior volume and define an upper portion of the interior volume and a lower portion of the interior volume. The at least one baffle may define at least one flow channel between the upper portion of the interior volume and the lower portion of the interior volume.
Abstract:
A system includes an overflow distributor and a support member. The overflow distributor includes a first sidewall, a second sidewall opposite the first sidewall, and a floor extending between the opposing first and second sidewalls. Interior surfaces of the first sidewall, the second sidewall, and the floor cooperatively define a trough configured to receive molten glass. Exterior surfaces of the first sidewall and the second sidewall are configured to direct molten glass that overflows the trough. The support member is disposed between the opposing first and second sidewalls of the overflow distributor and abutting an exterior surface of the floor of the overflow distributor.
Abstract:
A method of selecting a radius of curvature for a conveying structure (22) of a continuous glass processing apparatus for processing a flexible glass ribbon (20) having a thickness of no more than about 0.3 mm is provided. The method includes identifying a thickness of the flexible glass ribbon (20). A predetermined bending stress level is selected that is suitable for the flexible glass ribbon (20) during the processing of the flexible glass ribbon. A radius (R) of curvature is selected for a conveying structure that is suitable for conveying the flexible glass ribbon (20) during the processing of the flexible glass ribbon through the glass processing apparatus based on the predetermined bending stress and at least one of web deflection angle and line tension. The glass processing apparatus is provided including the conveying structure.
Abstract:
A lathe system for producing an optical fiber preform, the lathe system including a rotating bait rod, a burner box configured to deposit silica-containing soot on the rotating bait rod, a hood configured to direct airflow within the lathe system through an exhaust, and a perforated floor configured to expel air within the lathe system as a plurality of air jets from a bottom portion of the lathe system to a top portion of the lathe system.
Abstract:
A system includes an overflow distributor and a support member. The overflow distributor includes a first sidewall, a second sidewall opposite the first sidewall, and a floor extending between the opposing first and second sidewalls. Interior surfaces of the first sidewall, the second sidewall, and the floor cooperatively define a trough configured to receive molten glass. Exterior surfaces of the first sidewall and the second sidewall are configured to direct molten glass that overflows the trough. The support member is disposed between the opposing first and second sidewalls of the overflow distributor and abutting an exterior surface of the floor of the overflow distributor.
Abstract:
A fusion down-draw method for making a glass sheet using a forming body comprising an upper part (101) made of a first material and a lower part (103) made of a second material, where the first material has lower creep rate than the second material at the normal operating temperature of the forming body, and an fusion down-draw forming apparatus comprising such forming body. The invention is advantageous in that it solves the issues of internal stress and long-term creep issue of a unitary forming body made of a single material such as zircon.
Abstract:
An apparatus for redirecting a glass ribbon assembly from a first glass conveyance path to a second glass conveyance path. The apparatus includes a glass ribbon assembly source for providing the glass ribbon assembly including a flexible glass substrate that includes a first surface and a second surface that extend between a first edge and a second edge, first and second handling tabs affixed to the flexible glass substrate edges, and a primary roll member located downstream of the glass ribbon assembly source. The first glass conveyance path extends from the glass ribbon assembly source to the primary roll member, and the second glass conveyance path extends from the primary roll member in a downstream direction. Contact surfaces of the primary roll member are tangential to the first and second glass conveyance paths, and the second glass conveyance path is non-planar with the first glass conveyance path.