Abstract:
An apparatus and method for manufacturing a glass article includes a glass delivery device that includes a delivery orifice extending in a widthwise direction and including a first edge region, a central region, and a second edge region. The apparatus and method also include a cooling mechanism proximate the delivery orifice near the first edge region and the second edge region and a heating mechanism proximate the delivery orifice near the central region.
Abstract:
A method and apparatus for forming a glass ribbon comprising a forming body configured to form a continuously moving glass ribbon that is drawn therefrom, a first heating or cooling apparatus to initiate a crack in a viscoelastic region of the continuously moving glass ribbon, and a second heating or cooling apparatus to locate or stop the initiated crack in the continuously moving glass ribbon.
Abstract:
In some embodiments, apparatus and methods for forming a glass ribbon can comprise a support member to move a draw stack along a support surface. In some embodiments, a housing can define an exterior area positioned outside of the wall of the draw stack and between the downstream portion of the draw stack and the housing. The housing can comprise a vent configured to regulate gas flow through the vent from the exterior area to a location outside of the housing and outside of the draw stack. In some embodiments, the draw stack can comprise first gate and a second gate. Each gate can be provided with a corresponding row of conduits to cool a central edge plate.
Abstract:
Apparatus can comprise a conduit with at least one slot of a plurality of slots comprising an intermediate length including a maximum width that is less than a maximum width of a first end portion and/or a maximum width of a second end portion of the slot. In some embodiments, methods produce a glass ribbon with an apparatus comprising at least one slot within a peripheral wall of a conduit. In some embodiments, methods are provided for determining a volumetric flow profile dQ(x)/dx of molten material flowing through a slot in a peripheral wall of a conduit. In some embodiments, methods and apparatus provide a slot extending through an outer peripheral surface of a peripheral wall of a conduit that can comprise a width profile d(x) along a length of the slot to achieve a predetermined volumetric flow profile dQ(x)/dx of molten material through the slot.
Abstract:
Disclosed is an apparatus and method of making molten glass. The apparatus includes a glass former having a slot orifice design to deliver a glass ribbon. The slot orifice design can include a transition section, a slot extension, and external structural reinforcements. In some embodiments, the orifice opening distance of the slot extension varies along the width of the orifice. In some embodiments, the orifice has an orifice opening distance that is smaller at the center of the slot extension than at the edges of the slot extension, which limits glass flow at the center of the slot extension. Also disclosed is a method of making glass using the disclosed apparatus.
Abstract:
Disclosed is an apparatus and method of making molten glass. The apparatus includes a glass former having a slot orifice design to deliver a glass ribbon. The slot orifice design can include a transition section, a slot extension, and external structural reinforcements. In some embodiments, the orifice opening distance of the slot extension varies along the width of the orifice. In some embodiments, the orifice has an orifice opening distance that is smaller at the center of the slot extension than at the edges of the slot extension, which limits glass flow at the center of the slot extension. Also disclosed is a method of making glass using the disclosed apparatus.
Abstract:
According to one embodiment, a method for forming a laminated glass sheet includes forming a multi-layer glass melt from a molten core glass and at least one molten cladding glass. The multi-layer glass melt has a width Wm, a melt thickness Tm and a core to cladding thickness ratio Tc:Tcl. The multi-layer glass melt is directed onto the surface of a molten metal bath contained in a float tank. The width Wm of the multi-layer glass melt is less than the width Wf of the float tank prior to the multi-layer glass melt entering the float tank. The multi-layer glass melt flows over the surface of the molten metal bath such that the width Wm of the multi-layer glass melt increases, the melt thickness Tm decreases, and the core to cladding thickness ratio Tc:Tclremains constant as the multi-layer glass melt solidifies into a laminated glass sheet.
Abstract:
According to one embodiment, a method for forming a laminated glass sheet includes forming a multi-layer glass melt from a molten core glass and at least one molten cladding glass. The multi-layer glass melt has a width Wm, a melt thickness Tm and a core to cladding thickness ratio Tc:Tcl. The multi-layer glass melt is directed onto the surface of a molten metal bath contained in a float tank. The width Wm of the multi-layer glass melt is less than the width Wf of the float tank prior to the multi-layer glass melt entering the float tank. The multi-layer glass melt flows over the surface of the molten metal bath such that the width Wm of the multi-layer glass melt increases, the melt thickness Tm decreases, and the core to cladding thickness ratio Tc:Tcl remains constant as the multi-layer glass melt solidifies into a laminated glass sheet.
Abstract:
Method and apparatus for making a glass tube 205 comprising the step of flowing molten glass 121 into a trough 201 such that the molten glass includes a free surface 614 within the trough, wherein a portion of the molten glass with a corresponding portion of the free surface overflows an endless weir 613 to form a molten glass tube 205 flowing down a cylindrical surface 603. The glass tube making apparatus comprises an endless weir 613 configured such that a free surface 614 of molten glass 121 within a trough 201 may overflow the endless weir 613 to form a molten glass tube 205 flowing down a cylindrical surface 603.