Abstract:
A lighting apparatus includes at least one light emitting diode (LED) and a passive resonant converter circuit having an output coupled to the at least one LED and an input configured to be coupled to a ballast that produces an AC output. The passive resonant converter circuit may include a combination of a passive rectifier circuit, such as a passive diode bridge, and a resonant circuit, such as a CL resonant circuit. An input of the passive rectifier circuit may be configured to be coupled to the ballast and the resonant circuit and the at least one LED may be coupled to an output of the passive rectifier circuit. At least a portion of the passive resonant converter may be packaged with the at least one LED in a lamp and all or a portion of the passive resonant converter circuit may be packaged as a module or other unit for use with a lamp.
Abstract:
A lighting apparatus includes at least one light emitting diode (LED) and a passive resonant converter circuit having an output coupled to the at least one LED and an input configured to be coupled to a ballast that produces an AC output. The passive resonant converter circuit may include a combination of a passive rectifier circuit, such as a passive diode bridge, and a resonant circuit, such as a CL resonant circuit. An input of the passive rectifier circuit may be configured to be coupled to the ballast and the resonant circuit and the at least one LED may be coupled to an output of the passive rectifier circuit. At least a portion of the passive resonant converter may be packaged with the at least one LED in a lamp and all or a portion of the passive resonant converter circuit may be packaged as a module or other unit for use with a lamp.
Abstract:
An LED lighting device comprises at least one LED selectively energizable to develop light and a control circuit coupled to the LED that develops a command signal comprising first and second command signal components for controlling the at least one LED to cause the LED to develop light comprising a desired brightness in response to the first command signal component. The control circuit controls the at least one LED to cause the LED to develop light comprising a further desired parameter magnitude other than desired brightness in response to the second command signal component, and the first signal component comprises an IEC 0-10 volt analog lighting control.
Abstract:
A lighting apparatus includes a solid-state lighting circuit, at least one ballast connection port and at least one low-frequency blocking impedance coupling the at least one ballast connection port to the solid-state lighting circuit. In some embodiments, the at least one low-frequency blocking impedance may be configured to block a DC offset. In further embodiments, the at least one low-frequency blocking impedance may be configured to block a nominally 60 Hz frequency component. The at least one ballast connection port may include a first ballast connection port and a second ballast connection port and the at least one low-frequency blocking impedance may include a first low-frequency blocking impedance coupling the first ballast connection port to a first terminal of the solid-state lighting circuit and a second low-frequency blocking impedance coupling the second ballast connection port to a second input terminal of the solid-state lighting circuit.
Abstract:
An apparatus for interfacing a ballast to at least one light emitting diode (LED) includes a passive rectifier circuit and matching circuit coupled to an input port and/or an output port of the passive rectifier circuit and configured to at least partially match an impedance of the ballast.
Abstract:
An LED lighting device comprises at least one LED selectively energizable to develop light and a control circuit coupled to the LED that develops a command signal comprising first and second command signal components for controlling the at least one LED to cause the LED to develop light comprising a desired brightness in response to the first command signal component. The control circuit controls the at least one LED to cause the LED to develop light comprising a further desired parameter magnitude other than desired brightness in response to the second command signal component, and the first signal component comprises an IEC 0-10 volt analog lighting control.
Abstract:
A lighting apparatus includes a solid-state lighting circuit, a ballast connection port including first and second terminals and a filament-imitating impedance coupled between the first and a second terminals of the ballast connection port and to an input terminal of the solid-state lighting circuit. The filament-imitating impedance may be configured to transfer power at a nominal frequency of an output produced by the ballast and to provide an impedance between the first and second terminals of the ballast connection port that prevents shutdown of the ballast. In some embodiments, the filament-imitating impedance may vary with temperature, e.g., the filament-imitating impedance may be configured to imitate a temperature dependence of a fluorescent tube filament. The lighting apparatus may be included in a fluorescent lamp replacement lamp.
Abstract:
According to one aspect, a control system for an LED luminaire includes a dimming control circuit that develops an analog dimming command signal that is variable between zero volts and ten volts to command LED brightness. The control system further includes a modulation circuit coupled to the dimming control circuit. The modulation circuit modifies the analog dimming command signal so as to include digital data for further commanding a parameter of LED operation.
Abstract:
Emergency lighting devices and methods are disclosed. An emergency lighting device includes a passive resonant converter circuit configured to be coupled to an emergency lighting module and to an input end of a group of solid state emitters, at which the group of solid state emitters receives a normal operation current from an LED driver. The passive resonant converter circuit is configured to receive an emergency operation current from the emergency lighting module and to provide a converted emergency operation current to the group of solid state emitters at an emergency input of the group of solid state emitters in response to the emergency operation current. The emergency lighting module may be a fluorescent emergency lighting module.
Abstract:
Emergency lighting devices and methods are disclosed. An emergency lighting device includes a passive resonant converter circuit configured to be coupled to an emergency lighting module and to an input end of a group of solid state emitters, at which the group of solid state emitters receives a normal operation current from an LED driver. The passive resonant converter circuit is configured to receive an emergency operation current from the emergency lighting module and to provide a converted emergency operation current to the group of solid state emitters at an emergency input of the group of solid state emitters in response to the emergency operation current. The emergency lighting module may be a fluorescent emergency lighting module.