Abstract:
A critical dimension compensating method of a deep trench etching process includes: obtaining an etching critical dimension difference; compensating an masking layer layout for wafer etching according to a distance between an etching position and the center position of the wafer, and the etching critical dimension difference; and performing a deep trench etching to the wafer according to the compensated masking layer layout. The dimension of the etching patterns of the masking layer layout is compensated by using half of the critical dimension difference as the compensation value, such that the etch rate difference and the etching dimension difference caused by uneven distribution of the critical dimension at different wafer locations during the deep trench etching process are improved, thus greatly improving the uniformity of the critical dimension of the deep trench etching structure.
Abstract:
A method for wafer etching in a deep silicon trench etching process includes the following steps: a. electrostatically absorbing a wafer using an electrostatic chuck, and stabilizing the atmosphere required by the process (S110); b. performing the sub-steps of a main process for the wafer, and the time for the sub-steps of the main process being shorter than the time required by the wafer main process; c. releasing the electrostatic adsorption of the electrostatic chuck on the wafer; d. determining whether the cumulative time of the sub-steps of the main process reaches a predetermined threshold or not, if so, performing the step e (S150), and if not, repeating the operations in the steps a to c (S140); and e. ending a wafer manufacturing process. The etching method avoids the wafer from continuous contact with the electrostatic chuck, reduces electrostatic accumulation on the surface of the wafer, and therefore solves the problem of resist reticulation on the surface of the wafer in the DSIE process.