Abstract:
The present disclosure provides a fuel injector seal assembly comprising a seal member comprising a first section, a second section and an annular recess disposed in the first section, the first section having a first diameter and the second section having a second diameter wherein the first diameter is greater than the second diameter; and a sleeve member comprising a first end received by the first section of the seal member, the sleeve member further including a lengthwise portion configured to press fit around a nozzle housing of a fuel injector to cause heat transfer from the nozzle housing toward a body portion of the fuel injector.
Abstract:
This disclosure provides a fuel injector seal assembly comprising a seal component fabricated or formed of a first material and a thermally conductive or heat transfer component fabricated or formed of a second material that is different from the first material. The first material has a greater strength than the second material, and the second material has a greater thermal conductivity than the first material. Thus, the injector seal assembly is able to provide a primary benefit of a combustion seal while also providing an enhanced benefit of transferring heat from one portion of the fuel injector to another portion of the fuel injector.
Abstract:
The present disclosure provides a fuel injector seal assembly comprising a seal member comprising a first section, a second section and an annular recess disposed in the first section, the first section having a first diameter and the second section having a second diameter wherein the first diameter is greater than the second diameter; and a sleeve member comprising a first end received by the first section of the seal member, the sleeve member further including a lengthwise portion configured to press fit around a nozzle housing of a fuel injector to cause heat transfer from the nozzle housing toward a body portion of the fuel injector.