摘要:
A Communications base-station configured to operate as a hub in a wireless network and provide communication services to a set of remote customer devices using a wireless protocol is disclosed. The communications base-station includes an antenna array having a plurality of antennae arranged in a fashion as to enable the antenna array to transmit and receive wireless signals in both a substantially omnidirectional and non-omnidirectional pattern, a physical layer (PHY) device coupled to the antenna array and configured to transmit and receive wireless signals and a media access control (MAC) device coupled to the PHY device and configured to direct the antenna array to concurrently provide beamformed wireless signals to a first customer device and omnidirectional wireless signals to second customer device.
摘要:
A Communications base-station configured to operate as a hub in a wireless network and provide communication services to a set of remote customer devices using a wireless protocol is disclosed. The communications base-station includes an antenna array having a plurality of antennae arranged in a fashion as to enable the antenna array to transmit and receive wireless signals in both a substantially omnidirectional and non-omnidirectional pattern, a physical layer (PHY) device coupled to the antenna array and configured to transmit and receive wireless signals and a media access control (MAC) device coupled to the PHY device and configured to direct the antenna array to concurrently provide beamformed wireless signals to a first customer device and omnidirectional wireless signals to second customer device.
摘要:
The present invention is a system (1200), base station (1100)/customer premise equipment (1150) apparatus, and method (400 450) for a two-stage quiet-period management mechanism that provides the required protection to incumbents (primary spectrum users) while supporting the desired QoS of secondary users participating in a cognitive radio network. In the first stage, a simple fast sensing (301) is done (e.g., energy detection) by all devices in the network. Depending on the result of the fast sensing, the second and possibly longer stage, herein termed fine sensing (302), is performed.
摘要:
A system and method for multi-resolution packet (MRP) transmission for ultra-low power wireless networks is disclosed. In one embodiment, a method of transmitting a MRP for ultra-low power wireless networks and wherein each ultra-low power wireless network includes a transmitting unit and one or more communication units that communicate via wireless links, includes transmitting destination identifier data during a preamble period by the transmitting unit, not transmitting data during a midamble period that substantially follows the preamble period for processing the received destination identifier data to determine a destination identifier by the one or more communication units, and transmitting payload data during a payload period substantially following the midamble period for processing payload data received during the payload period based on the determined destination identifier during the midamble period.
摘要:
A network information apparatus (400), system (100) (200) and method for distributing network information in a multi-channel (MC) wireless network (100) (200), comprising a network information module (400) that implements inter-channel communication of network information in an MC network according to a pre-determined network information sharing procedure and keeping an own cache (401) of each node refreshed and free of out-of-date information, and, for an active proxy-based sharing procedure thereof only, adapting to changes in node/channel associations, suppressing duplicate inter-channel information, and synchronizing own clocks (404) of each node.
摘要:
A method directed to overhearing problems of Body Area Network (BAN) medium access control protocols. The method comprises generating a preamble frame (S310); encoding a destination address of a target receiver device as a length of the preamble frame (S320); and transmitting the preamble frame (S330).
摘要:
A medium access control (MAC) duty cycling is carried out in a body area network (BAN). The duty cycling includes sending a wake-up (WUP) message from a sender node to one or more target receiver nodes when a wireless medium of the BAN is free (S510); determining if at least one target receiver node responded with a READY message during a sniff time interval of the sender node (S520); determining if a number of WUP messages transmitted by the sender node exceeds a predefined threshold when the READY message was not received (S540); and setting the sender node to operate in a TURN mode when the number of WUP messages exceeded the predefined threshold (S550).
摘要:
The system (500), apparatus (400), and method of the present invention provide three architectures for logically organizing multiple channels: a parallel multi-channel superframe (PMS) (100), a sequential multi-channel superframe (SMS) (200), and a non-overlapping multi-channel superframe (NMS) (300). Each of these architectures arises from different trade-offs and is applicable to any multi-channel MAC protocol that is based on the concept of a superframe, e.g., IEEE 802.11 superframe.
摘要:
A system (400), apparatus (300), and method (100) are provided to synchronize distributed (otherwise uncoordinated) networks (400) of independent nodes (401i). Such synchronization can be used in a number of different ways. In the context of cognitive radios, such synchronization can be used to synchronize quiet periods. Quiet periods are times when all cognitive radios (that are otherwise uncoordinated) become quiet so that incumbent users can be detected reliably. The technique of the present invention converges quickly and scales well.
摘要:
A system and method for multi-resolution packet (MRP) transmission for ultra-low power wireless networks is disclosed. In one embodiment, a method of transmitting a MRP for ultra-low power wireless networks and wherein each ultra-low power wireless network includes a transmitting unit and one or more communication units that communicate via wireless links, includes transmitting destination identifier data during a preamble period by the transmitting unit, not transmitting data during a midamble period that substantially follows the preamble period for processing the received destination identifier data to determine a destination identifier by the one or more communication units, and transmitting payload data during a payload period substantially following the midamble period for processing payload data received during the payload period based on the determined destination identifier during the midamble period.