摘要:
A robot is used to pick parts from a bin. The robot has a compliant apparatus and one or more tools are connected to the apparatus to perform the picking. The compliant apparatus has mechanisms for monitoring and/or controlling its compliance. The compliant apparatus can have various embodiments. Force sensing can be used during removal of grasped parts from the bin to determine the force exerted on the picking tool(s). The signal indicative of the exerted force can be used by the robot controller to determine the weight of the parts that may be held by the picking tool(s). The robot has one or more devices which can be the picking tool to stir the parts in the bin.
摘要:
A robot for picking one or more parts (41) randomly distributed in a bin (40), this robot comprising a moveable arm (16a, 16b), a computing device (14) connected to said robot for controlling motion of said moveable arm and a tool (24) connected to said moveable arm for picking one or more of said parts from said bin,—said robot using said picking tool by itself or another tool (96, 98) mounted on the robot or grasped by the picking tool to stir one or more of said one or more randomly distributed parts in said bin when said computing device determines that a predetermined event requiring stirring of said parts has occurred.
摘要:
A robot for picking one or more parts (41) randomly distributed in a bin (40), this robot comprising a moveable arm (16a, 16b), a computing device (14) connected to said robot for controlling motion of said moveable arm and a tool (24) connected to said moveable arm for picking one or more of said parts from said bin,—said robot using said picking tool by itself or another tool (96, 98) mounted on the robot or grasped by the picking tool to stir one or more of said one or more randomly distributed parts in said bin when said computing device determines that a predetermined event requiring stirring of said parts has occurred.
摘要:
A robot is used to pick parts from a bin. The robot has a compliant apparatus and one or more tools are connected to the apparatus to perform the picking. The compliant apparatus has mechanisms for monitoring and/or controlling its compliance. The compliant apparatus can have various embodiments. Force sensing can be used during removal of grasped parts from the bin to determine the force exerted on the picking tool(s). The signal indicative of the exerted force can be used by the robot controller to determine the weight of the parts that may be held by the picking tool(s). The robot has one or more devices which can be the picking tool to stir the parts in the bin.
摘要:
A robot is used to pick parts from a bin. The robot has a compliant apparatus and one or more tools are connected to the apparatus to perform the picking. The compliant apparatus has mechanisms for monitoring and/or controlling its compliance. The compliant apparatus can have various embodiments. Force sensing can be used during removal of grasped parts from the bin to determine the force exerted on the picking tool(s). The signal indicative of the exerted force can be used by the robot controller to determine the weight of the parts that may be held by the picking tool(s). The robot has one or more devices which can be the picking tool to stir the parts in the bin.
摘要:
A robot is used to pick parts from a bin. The robot has a compliant apparatus and one or more tools are connected to the apparatus to perform the picking. The compliant apparatus has mechanisms for monitoring and/or controlling its compliance. The compliant apparatus can have various embodiments. Force sensing can be used during removal of grasped parts from the bin to determine the force exerted on the picking tool(s). The signal indicative of the exerted force can be used by the robot controller to determine the weight of the parts that may be held by the picking tool(s). The robot has one or more devices which can be the picking tool to stir the parts in the bin.
摘要:
A robot (12) is used to pick parts from a bin (40 in FIG. 1). The robot has a compliant apparatus (42) and one or more tools are connected to the apparatus to perform the picking. The compliant apparatus has mechanisms for monitoring and/or controlling its compliance. The compliant apparatus can have various embodiments. Force sensing can be used during removal of grasped parts from the bin to determine the force exerted on the picking tool (s). The signal indicative of the exerted force can be used by the robot controller to determine the weight of the parts that may be held by the picking tool(s). The robot has one or more devices (FIG. 16, 17) which can be the picking tool to stir the parts in the bin.
摘要:
A robot (12) is used to pick parts from a bin (40 in FIG. 1). The robot has a compliant apparatus (42) and one or more tools are connected to the apparatus to perform the picking. The compliant apparatus has mechanisms for monitoring and/or controlling its compliance. The compliant apparatus can have various embodiments. Force sensing can be used during removal of grasped parts from the bin to determine the force exerted on the picking tool (s). The signal indicative of the exerted force can be used by the robot controller to determine the weight of the parts that may be held by the picking tool(s). The robot has one or more devices (FIG. 16, 17) which can be the picking tool to stir the parts in the bin.
摘要:
A lead-through teaching device for an industrial robot is calibrated by moving the device to each of a predetermined number of reference poses. A controller responds to a signal from the device induced by gravity at each of the reference poses to calibrate the device to a predetermined coordinate frame. If necessary, a removable weight can be mounted to the device. The robot can hold either the tool that is to perform work on a workpiece or the workpiece. In those applications where the tool has a removable component, the lead-through teaching device can replace the removable component during its calibration to the predetermined coordinate frame.
摘要:
The present invention is directed to a method and apparatus for developing a metadata-infused software program for controlling a device, such as a robot. A first library of software segments with metadata and a second library of script documents are provided. A part program wizard uses a script document selected from the second library to display queries on a screen of an interface device. Using input information received in response to the queries, the part program wizard selects and combines software segments from the first library to produce the metadata-infused software program. The metadata identifies the selected software segments and includes statuses of the selected software segments. A graphical representation of the metadata infused software program is displayed on the screen and conveys the statuses of the software segments. A deployment wizard is utilized to teach data points for the metadata-infused software program.