摘要:
Described herein are methods for predicting the recurrence, progression, and metastatic potential of a prostate cancer in a subject. For example, the method comprises detecting in a sample from a subject one or more biomarkers selected from the group consisting of FOXO1A, SOX9, CLNS1A, PTGDS, XPO1, LETMD1, RAD23B, ABCC3, APC, CHES1, EDNRA, FRZB, HSPG2, and TMPRSS2_ETV1 FUSION. The method can further comprise detecting in a sample from a subject one or more biomarkers selected from the group consisting of miR-103, miR-339, miR-183, miR-182, miR-136, and miR-221. An increase or decrease in one or more biomarkers as compared to a standard indicates a recurrent, progressive, or metastatic prostate cancer.
摘要:
Described herein are methods for predicting recurrence, progression, and metastatic potential of a prostate cancer in a subject. In certain embodiments, the methods comprise analyzing a sample from a subject for aberrant expression patters of one or more biomarkers disclosed herein. An increase or decrease in one or more biomarkers as compared to a standard indicates a recurrent, progressive, or metastatic prostate cancer.
摘要:
A lamp assembly provides both instant light through use of an incandescent/halogen light/lamp source and an energy saving type light provided by a compact fluorescent light/lamp source. Both light sources are enclosed within a common envelope or outer bulb. First and second thermal sensors are provided in the lamp envelope at spaced locations to monitor the temperature of the lamp. When the sum of these two temperatures reaches a preselected value, power to the incandescent lamp source is terminated. Alternatively, when the difference these two temperatures reaches a preselected value, power to the incandescent lamp source is terminated.
摘要:
The invention is directed to a lamp assembly, and particularly to a method of fixing a first light source and a second light source in a single lamp assembly. More specifically, the invention provides a lamp assembly and a mechanism for fixing at least two light sources therein, at least one of which is a compact fluorescent light source, an incandescent light source, or a halogen light source, and where the fixing mechanism used involves soldering the lead-in wires of the second light source to a printed circuit board of the lamp assembly, which is in operative connection with the lamp ballast.
摘要:
The invention is directed to a lamp assembly, and particularly to a method of fixing a first light source and a second light source in a single lamp assembly. More specifically, the invention provides a lamp assembly and a mechanism for fixing at least two light sources therein, at least one of which is a compact fluorescent light source, an incandescent light source, or a halogen light source, and where the fixing mechanism used involves soldering the lead-in wires of the second light source to a printed circuit board of the lamp assembly, which is in operative connection with the lamp ballast.
摘要:
A compact fluorescent lamp includes a discharge tube having cathodes disposed adjacent opposite ends. A fill gas which includes mercury is disposed within the discharge tube. The lamp further includes an amalgam located in the discharge tube and dispersed in the arc to be heated thereby for emitting mercury vapor during at least a starting period.
摘要:
A lamp assembly provides both instant light through use of an incandescent/halogen light/lamp source and an energy saving type light provided by a compact fluorescent light/lamp source. Both light sources are enclosed within a common envelope or outer bulb. First and second thermal sensors are provided in the lamp envelope at spaced locations to monitor the temperature of the lamp. When the sum of these two temperatures reaches a preselected value, power to the incandescent lamp source is terminated. Alternatively, when the difference these two temperatures reaches a preselected value, power to the incandescent lamp source is terminated.
摘要:
The disclosure relates to a life prediction system for a fan of a lamp. The system comprises a fan signal detecting module to detect at least one working parameter of the fan; and a micro control unit to receive the working current signal, the environment temperature signal and the working rotation speed signal of the fan. The detecting module comprises a current detecting unit to detect a working current of the fan and output a working current signal; a temperature detecting unit to detect a working environment temperature of the fan and output an environment temperature signal; and a rotation speed detecting unit to detect and output a working rotation speed signal of the fan. The micro control unit calculates a predicted residual life of the fan based on the received working current signal, the environment temperature signal, the working rotation speed signal, through the life model of the fan.