Abstract:
An image capturing apparatus includes: an imaging element; a main lens that condenses light from a subject toward the imaging element; a micro lens array that is configured by a plurality kinds of micro lenses with different focal lengths that is disposed between the imaging element and the main lens and causes light transmitted through the main lens to form an image on the imaging element; and a CPU that, in response to receiving a designation of a distance to a side of a subject that is photographed, performs weighting for each image that is imaged by the plurality kinds of micro lenses of the imaging element based on the distance so as to constitute one captured image.
Abstract:
A measurement apparatus including: a first sensor which continuously acquires a vertical direction acceleration generated in accordance with a traveling movement of a user, a second sensor which continuously acquires a travel direction acceleration generated in accordance with the traveling movement, a first determination unit which determines, based on a continuous change of the vertical direction acceleration and the travel direction acceleration, a plurality of landing points of time each being a point of time when a foot of the user lands, and a first acquiring unit which acquires, based on the plurality of landing points of time, a period required for one step of the user in the traveling movement.
Abstract:
An image processing apparatus includes an obtainer and an acquirer. The obtainer obtains video information including video of a measurement target and a visible light signal that includes a measurement time and measurement information of the measurement target measured by a measuring apparatus attached to the measurement target, the visible light signal being transmitted by the measuring apparatus. The acquirer acquires the measurement time and the measurement information from the visible light signal included in the video information obtained by the obtainer, and synchronizes, with respect to time, the measurement information and the video information based on the measurement time acquired.
Abstract:
An imaging device includes an imager that images a multi-view image in which plural sub-images from plural viewpoints are aligned, a display that displays images; and a Central Processing Unit (CPU). The CPU is configured to: generate a main reconstruction image for viewing display after photographing by a main image generation process from the sub-images of the multi-view image, and store the main reconstruction image; obtain image displacement degrees for the sub-images respectively, wherein each of the image displacement degrees indicates a displacement between a position of a predetermined part in a sub-image and a position of a part corresponding to a photographic object captured in the predetermined part in another sub-image; determine a clipping size of partial images clipped from a predetermined range of the sub-images included in the multi-view image; and cause the display to display the main reconstruction image in the viewing display after the photographing.
Abstract:
An exercise support device includes a motion sensor that is worn on a user's body and outputs data regarding the motion status of the user's body when the user is performing a moving exercise, and a control section which acquires exercise information regarding the user's exercise status. The control section selects a specific exercise index having relatively strong correlation with a moving speed from exercise indexes acquired from the data outputted when the user moves on a movement section plural times at moving speeds different from each other, acquires a coefficient that is used in an approximate expression which represents the specific exercise index and is a linear function including the moving speed as a variable and the coefficient, and acquires the exercise information based on the specific exercise index and the coefficient when the user moves by the moving exercise.
Abstract:
An image capturing apparatus includes: an imaging element; a main lens that condenses light from a subject toward the imaging element; a micro lens array that is configured by a plurality kinds of micro lenses with different focal lengths that is disposed between the imaging element and the main lens and causes light transmitted through the main lens to form an image on the imaging element; and a CPU that, in response to receiving a designation of a distance to a side of a subject that is photographed, performs weighting for each image that is imaged by the plurality kinds of micro lenses of the imaging element based on the distance so as to constitute one captured image.
Abstract:
A sub-image extractor extracts a target sub-image from a light field image. A partial area definer defines a predetermined area in the target sub-image as a partial area. A pixel extractor extracts pixels from the partial area, the number of pixels meeting correspondence areas of a generation image. The pixel arranger arranges the extracted pixels to the correspondence areas of the generation image in an arrangement according to the optical path of the optical system which photographs the light field image. Pixels are extracted for all sub-images in the light field image, and are arranged to the generation image to generate a reconstruction image.
Abstract:
An exercise support device and an exercise support method are provided by which a judgment regarding the landing of the left and right feet of a user can be accurately made with low power consumption, so that the user can appropriately grasp and judge the balance of the use of the body in an exercise. First, based on changes in acceleration in a vertical direction with respect to the ground which has been acquired by a sensor section worn on the body during a running exercise, landing timing at which one of the left and right feet is landed is detected. Then, based on whether a difference between angular velocities around a traveling direction axis immediately after the latest landing timing and the preceding landing timing has a positive or negative value, whether the landed foot is the left foot or the right foot is judged.
Abstract:
An image capturing apparatus includes: an imaging element; a main lens that condenses light from a subject toward the imaging element; a micro lens array that is configured by a plurality kinds of micro lenses with different focal lengths that is disposed between the imaging element and the main lens and causes light transmitted through the main lens to form an image on the imaging element; and a CPU that, in response to receiving a designation of a distance to a side of a subject that is photographed, performs weighting for each image that is imaged by the plurality kinds of micro lenses of the imaging element based on the distance so as to constitute one captured image.
Abstract:
A sub-image extractor extracts a target sub-image from a light field image. A partial area definer defines a predetermined area in the target sub-image as a partial area. A pixel extractor extracts pixels from the partial area, the number of pixels meeting correspondence areas of a generation image. The pixel arranger arranges the extracted pixels to the correspondence areas of the generation image in an arrangement according to the optical path of the optical system which photographs the light field image. Pixels are extracted for all sub-images in the light field image, and are arranged to the generation image to generate a reconstruction image.