Abstract:
A method for delivering a reductant into a reductant tank through a fill conduit associated with the reductant tank is provided. The reductant tank is in selective fluid communication with an external source having a delivery conduit associated therewith. The method includes connecting the delivery conduit of the external source with the fill conduit of the reductant tank. The method also includes operating a valve provided on the delivery conduit in a first configuration. The method includes changing an operation of the valve from the first configuration to a second configuration. The method also includes purging of a portion of the reductant retained in the fill conduit into the external source through the pump assembly based on the second configuration of the valve.
Abstract:
A dosing control unit (DCU) may receive operational information associated with a selective catalytic reduction (SCR) aftertreatment system. The DCU may generate a deposit prediction, associated with the SCR aftertreatment system, based on the operational information. The deposit prediction may include information that identifies a predicted size of a deposit in a dosing zone of a plurality of dosing zones associated with the SCR aftertreatment system. The deposit prediction may be generated using a deposit growth model associated with predicting sizes of deposits in the plurality of dosing zones. The DCU may select a dosing scheme, of a plurality of dosing schemes, based on the deposit prediction. The DCU may implement the selected dosing scheme in order to cause diesel exhaust fluid (DEF) to be dosed in the plurality of dosing zones in accordance with the selected dosing scheme.
Abstract:
A dosing control unit (DCU) may receive operational information associated with a selective catalytic reduction (SCR) aftertreatment system. The DCU may generate a deposit prediction, associated with the SCR aftertreatment system, based on the operational information. The deposit prediction may include information that identifies a predicted size of a deposit in a dosing zone of a plurality of dosing zones associated with the SCR aftertreatment system. The deposit prediction may be generated using a deposit growth model associated with predicting sizes of deposits in the plurality of dosing zones. The DCU may select a dosing scheme, of a plurality of dosing schemes, based on the deposit prediction. The DCU may implement the selected dosing scheme in order to cause diesel exhaust fluid (DEF) to be dosed in the plurality of dosing zones in accordance with the selected dosing scheme.
Abstract:
A system and method to provide an operator indication for filling a reductant tank is provided. A first temperature sensor and a second temperature sensor receives a first signal and a second signal indicative of a coolant temperature and an ambient temperature associated with the reductant tank, respectively. Further, a controller determines a rate of change of temperature of the coolant based on the first signal and the second signal. The controller predicts thawing time for the fill valve based on the rate of change of the temperature of the coolant. The controller provides a first indication to the operator of a ready-to-fill status of the reductant tank based on the thawing time. The controller receives a third signal indicating a level of reductant in the reductant tank from a level sensor to identify a tank-full status of the reductant tank and to provide a second indication to the operator.