Abstract:
A computer-implemented method of scoring an automated pass performed by a machine having an implement is provided. The computer-implemented method may include calculating a normalized power value based on one or more machine parameters, determining an average normalized power value based on the normalized power value calculated during the pass, and generating a status indicator based on the average normalized power value and one or more predefined thresholds.
Abstract:
A system for selecting shift schedules of a transmission of a vehicle configured to change gears according to two or more shift schedules includes a controller. The controller is configured to estimate mass of the vehicle based on a plurality of accelerations of the vehicle from a standstill, and estimate a road load of the vehicle based on the estimated mass. The controller is also configured to estimate a grade of terrain over which the vehicle is travelling based on the estimated mass of the vehicle. The controller is further configured to select between at least a first shift schedule and a second shift schedule based on at least one of the estimated mass of the vehicle, characteristics of the terrain over which the vehicle is travelling, the estimated grade of the terrain over which the vehicle is travelling, and functions capable of being performed by the vehicle.
Abstract:
A computer-implemented method for monitoring an operation performed by a machine having an implement is provided. The method includes determining a fuel consumption rate value of the machine. The method also includes generating a provisional value based at least in part on the fuel consumption rate value for the operation. The method further includes determining one or more thresholds for the operation. The one or more thresholds correspond to a normal fuel consumption rate value of the machine for the operation. The method further includes generating a status indicator, indicative of a score of the operation based at least in part on a comparison of the provisional value and the one or more thresholds.
Abstract:
A computer-implemented method of responding to a missed cut during a pass made along a planned cut profile using an implement is provided. The computer-implemented method may include identifying the missed cut based at least partially on an implement position and a target cut point, predicting a performance value of the pass based at least partially on the missed cut and an implement load, and restarting the pass if the performance value is less than a minimum performance threshold and the implement load is less than a minimum load threshold.
Abstract:
A computer-implemented method for monitoring an operation performed by a machine having an implement is provided. The method includes determining a fuel consumption rate value of the machine. The method also includes generating a provisional value based at least in part on the fuel consumption rate value for the operation. The method further includes determining one or more thresholds for the operation. The one or more thresholds correspond to a normal fuel consumption rate value of the machine for the operation. The method further includes generating a status indicator, indicative of a score of the operation based at least in part on a comparison of the provisional value and the one or more thresholds.
Abstract:
A computer-implemented method of responding to a missed cut during a pass made along a planned cut profile using an implement is provided. The computer-implemented method may include identifying the missed cut based at least partially on an implement position and a target cut point, predicting a performance value of the pass based at least partially on the missed cut and an implement load, and restarting the pass if the performance value is less than a minimum performance threshold and the implement load is less than a minimum load threshold.