摘要:
A direct oxidation fuel cell (DOFC) system, comprises at least one fuel cell assembly including a cathode and an anode with an electrolyte positioned therebetween; a source of liquid fuel in fluid communication with an inlet of the anode; an oxidant supply in fluid communication with an inlet of the cathode; a liquid/gas (L/G) separator in fluid communication with outlets of the anode and cathode for: (1) receiving unreacted fuel and liquid and gaseous products, and (2) supplying a solution of fuel and liquid product to the anode inlet; and a control system for measuring the amount of liquid product and controlling oxidant stoichiometry of the system operation in response to the measured amount of liquid product. Alternatively, the control system controls the concentration of the liquid fuel in the solution supplied to the anode inlet, based upon the system operating temperature or output power.
摘要:
A direct oxidation fuel cell (DOFC) system, comprises at least one fuel cell assembly including a cathode and an anode with an electrolyte positioned therebetween; a source of liquid fuel in fluid communication with an inlet of the anode; an oxidant supply in fluid communication with an inlet of the cathode; a liquid/gas (L/G) separator in fluid communication with outlets of the anode and cathode for: (1) receiving unreacted fuel and liquid and gaseous products, and (2) supplying a solution of fuel and liquid product to the anode inlet; and a control system for measuring the amount of liquid product and controlling oxidant stoichiometry of the system operation in response to the measured amount of liquid product. Alternatively, the control system controls the concentration of the liquid fuel in the solution supplied to the anode inlet, based upon the system operating temperature or output power.
摘要:
A direct oxidation fuel cell (DOFC) system, comprises at least one fuel cell assembly including a cathode and an anode with an electrolyte positioned therebetween; a source of liquid fuel in fluid communication with an inlet of the anode; an oxidant supply in fluid communication with an inlet of the cathode; a liquid/gas (L/G) separator in fluid communication with outlets of the anode and cathode for: (1) receiving unreacted fuel and liquid and gaseous products, and (2) supplying a solution of fuel and liquid product to the anode inlet; and a control system for measuring the amount of liquid product and controlling oxidant stoichiometry of the system operation in response to the measured amount of liquid product. Alternatively, the control system controls the concentration of the liquid fuel in the solution supplied to the anode inlet, based upon the system operating temperature or output power.
摘要:
A high power density direct oxidation fuel cell (DOFC) with comprising an anode electrode with a microporous layer (MPL) configured to alleviate cathode dryout and thus reduce electrode resistance in the cathode that interfaces with a hydrocarbon membrane. The MPL is configured to alleviate cathode dryout by comprising a fluoropolymer and an electrically conductive material, wherein the MPL is loaded with fluoropolymer in the range from about 10 to about 25 wt. %.
摘要:
A direct oxidation fuel cell (DOFC) system comprises at least one fuel cell assembly including a cathode and an anode with an electrolyte positioned therebetween; a source of liquid fuel in fluid communication with an anode inlet; an oxidant supply in fluid communication with a cathode inlet; a liquid/gas (L/G) separator in fluid communication with anode and cathode outlets for: (1) receiving unreacted fuel and liquid and gaseous products of electrochemical reactions at the cathode and anode, and (2) supplying the unreacted fuel and liquid product to the inlet of said anode; and a control and/or regulation system for determining a fuel efficiency value of the DOFC system during operation and determining and regulating and/or controlling oxidant stoichiometry of the DOFC system at an appropriate value in response to the determined fuel efficiency value.
摘要:
An anode electrode for use in a fuel cell comprises a stacked structure including, in sequence: a catalyst layer, a hydrophobic, microporous layer (“MPL”), a porous gas diffusion layer (“GDL”), and an anode plate with at least one recessed fuel supply-fuel/gas exhaust channel formed in a surface thereof facing the GDL, wherein the stacked structure further comprises at least one hydrophobic region aligned with the at least one recessed channel. The electrode is useful in direct oxidation fuel cells and systems, such as direct methanol fuel cells operating with highly concentrated liquid fuel.
摘要:
An anode electrode for use in a fuel cell comprises a stacked structure including, in sequence: a catalyst layer, a hydrophobic, microporous layer (“MPL”), a porous gas diffusion layer (“GDL”), and an anode plate with at least one recessed fuel supply-fuel/gas exhaust channel formed in a surface thereof facing the GDL, wherein the stacked structure further comprises at least one hydrophobic region aligned with the at least one recessed channel. The electrode is useful in direct oxidation fuel cells and systems, such as direct methanol fuel cells operating with highly concentrated liquid fuel. An anode electrode for use in a fuel cell comprises a stacked structure including, in sequence: a catalyst layer, a hydrophobic, microporous layer (“MPL”), a porous gas diffusion layer (“GDL”), and an anode plate with at least one recessed fuel supply-fuel/gas exhaust channel formed in a surface thereof facing the GDL, wherein the stacked structure further comprises at least one hydrophobic region aligned with the at least one recessed channel. The electrode is useful in direct oxidation fuel cells and systems, such as direct methanol fuel cells operating with highly concentrated liquid fuel.
摘要:
A direct oxidation fuel cell anode system includes an anode; a circulation loop in fluid communication with the anode and including a circulation pump, the circulation pump being configured to circulate a circulating liquid in the circulation loop; a fuel cartridge; and a fuel pump in fluid communication with the circulation loop and the fuel cartridge, the fuel pump being configured to inject a fuel from the fuel cartridge into the circulating liquid, wherein the anode system is configured to accept no water from a cathode exhaust.
摘要:
An apparatus for transporting articles includes a hollow column (10), a shaft (33) furnished with a helical vane (34), and a motor (32). The helical column (10) has a helical track (11) formed therewithin which helically extends along the inner surface of the hollow column (10) in a first direction, and has a first communicating port (12) and a second communicating port (13). The shaft (33) with the helical vane (34) is coaxially and rotatably mounted within the hollow column (10). The helical vane (34) is fixedly mounted with and helically extends about the entire shaft (33) in a second direction opposite to the second direction. The motor (32) is disposed for driving the shaft (33) together with the helical vane (34) to rotate relative to the helical track (11), so that articles can be transported along the helical track (11) by the helical vane (34) between the first communicating port (12) and the second communicating port (13), so that articles can be transported from a first position to a second position. In such an arrangement, the space required for a transporting apparatus will be a minimum.
摘要:
A cathode for use in a direct oxidation fuel cell (DOFC) comprises a gas diffusion medium (GDM) including a backing layer and a microporous layer comprising a fluoropolymer and an electrically conductive material, wherein loading of the fluoropolymer in the microporous layer is in the range from about 10 to about 60 wt. %. In use, a concentrated solution of a liquid fuel is supplied to an anode and an oxidant to the cathode of the fuel cell, and the fuel cell may be operated at a low oxidant stoichiometry ξc not greater than about 2.5.