摘要:
Disclosed are methods for treating endoleaks arising from endovascular repair of abdominal aortic aneurysms. The disclosed methods involve the in situ sealing of endoleaks after placement of an endovascular prostheses in the abdominal aorta. Sealing of endoleaks is achieved by injection of either a biocompatible polymer or prepolymer fluid composition into the endoleak which composition in situ solidifies to seal the leak. Preferably, the biocompatible fluid composition comprises a contrast agent to allow the clinician to visualize the sealing process.
摘要:
Disclosed are methods for treating endoleaks arising from endovascular repair of abdominal aortic aneurysms. The disclosed methods involve the in situ sealing of endoleaks after placement of an endovascular prostheses in the abdominal aorta. Sealing of endoleaks is achieved by injection of either a biocompatible polymer or prepolymer fluid composition into the endoleak which composition in situ solidifies to seal the leak. Preferably, the biocompatible fluid composition comprises a contrast agent to allow the clinician to visualize the sealing process.
摘要:
Disclosed are methods for inhibiting the formation of potential endoleaks associated with endovascular repair of abdominal aortic aneurysms which comprise the in situ embolization of blood vessels associated with the aneurysmal sac prior to placement of an endovascular prostheses in the abdominal aorta. Embolization of the blood vessels is achieved by injection of either a biocompatible polymer or prepolymer fluid composition into these vessels in a sufficient amount such that upon in situ solidification of this composition, blood circulation through these blood vessels and the aneurysmal sac ceases.
摘要:
A stent or other prosthesis may be formed by coating a single continuous wire scaffold with a polymer coating. The polymer coating may consist of layers of electrospun polytetrafluoroethylene (PTFE). Electrospun PTFE of certain porosities may permit endothelial cell growth within the prosthesis.
摘要:
A stent or other prosthesis may be formed by coating a single continuous wire scaffold with a polymer coating. The polymer coating may consist of layers of electrospun polytetrafluoroethylene (PTFE). Electrospun PTFE of certain porosities may permit endothelial cell growth within the prosthesis.