摘要:
A binaural hearing system (“system”) enhances and/or preserves interaural level differences between first and second signals. The system includes first and second audio detectors associated with first and second ears of a user, respectively. The audio detectors detect an audio signal presented to the user and generate the first and second signals to represent the audio signal as detected at the first and second ears, respectively. The system also includes a first sound processor that receives the first signal from the first audio detector and the second signal from a second sound processor via a communication link with the second sound processor. The first sound processor generates a directional signal representative of a spatial filtering of the audio signal detected at the first ear according to an end-fire directional polar pattern and presents an output signal representative of the directional signal to the user at the first ear.
摘要:
A binaural hearing system (“system”) preserves and/or enhances interaural level differences (“ILDs”) between first and second signals. The system includes audio detectors each associated with an ear of a user. The audio detectors detect an audio signal presented to the user and generate the first and second signals to represent the audio signal as detected at each ear. The system also includes sound processors associated with each ear that each receive the first and second signals from the audio detectors directly and/or by way of a communication link from the other sound processor. The sound processors each perform operations with respect to the first and second signals to preserve and/or enhance the ILDs between the signals. In so doing, the sound processors perform a contralateral gain synchronization operation to a first degree at the first sound processor and to a distinct second degree at the second sound processor.
摘要:
An illustrative system includes a stimulation device configured to apply stimulation to a recipient, a sensing device configured to detect a physiological condition of the recipient, and a processing unit communicatively coupled to the stimulation device and the sensing device. The processing unit determines a stimulation strategy that is customized to the recipient and includes stimulation frames and stimulation gaps. The processing unit then directs the stimulation device to apply the stimulation to the recipient in accordance with the stimulation strategy by applying the stimulation only during time that corresponds to the stimulation frames. The processing unit also directs the sensing device to detect the physiological condition of the recipient in accordance with the stimulation strategy by detecting only during time that corresponds to the stimulation gaps. Based on the detected physiological condition, the processing unit performs an action. Corresponding systems, methods, and apparatuses are also disclosed.
摘要:
A binaural hearing system (“system”) enhances and/or preserves interaural level differences between first and second signals. The system includes first and second audio detectors associated with first and second ears of a user, respectively. The audio detectors detect an audio signal presented to the user and generate the first and second signals to represent the audio signal as detected at the first and second ears, respectively. The system also includes a first sound processor that receives the first signal from the first audio detector and the second signal from a second sound processor via a communication link with the second sound processor. The first sound processor generates a directional signal representative of a spatial filtering of the audio signal detected at the first ear according to an end-fire directional polar pattern and presents an output signal representative of the directional signal to the user at the first ear.
摘要:
A binaural hearing system includes a binaural pair of microphones that are configured to be located, respectively, at a first ear and a second ear of a user. The system further includes an interconnected binaural pair of sound processors that are associated with the binaural pair of microphones. The sound processors are configured to preserve an interaural level difference (“ILD”) between a first signal generated by the first microphone and a second signal generated by the second microphone. The sound processors do this by performing a contralateral gain synchronization operation to a first degree with respect to the first and second signals at the first sound processor, and to a second degree with respect to the first and second signals at the second sound processor, where the first degree is distinct from the second degree or at least one of the first and second degrees is a partial degree.
摘要:
A binaural hearing system includes a binaural pair of microphones that are configured to be located, respectively, at a first ear and a second ear of a user. The system further includes an interconnected binaural pair of sound processors that are associated with the binaural pair of microphones. The binaural pair of sound processors are configured to preserve, to a partial degree for each of the first and second ears of the user, an interaural level difference (“ILD”) between a first signal generated by the first microphone and a second signal generated by the second microphone. The sound processors do this by performing a contralateral gain synchronization operation to a first partial degree with respect to the first and second signals at the first sound processor, and to a second partial degree with respect to the first and second signals at the second sound processor.
摘要:
A binaural hearing system (“system”) preserves and/or enhances interaural level differences (“ILDs”) between first and second signals. The system includes audio detectors each associated with an ear of a user. The audio detectors detect an audio signal presented to the user and generate the first and second signals to represent the audio signal as detected at each ear. The system also includes sound processors associated with each ear that each receive the first and second signals from the audio detectors directly and/or by way of a communication link from the other sound processor. The sound processors each perform operations with respect to the first and second signals to preserve and/or enhance the ILDs between the signals. In so doing, the sound processors perform a contralateral gain synchronization operation to a first degree at the first sound processor and to a distinct second degree at the second sound processor.
摘要:
An echo canceller comprising a first adaptive filter having N_long coefficients for converging to an echo path, a non-adaptive filter representing a direct echo path portion captured by the first adaptive filter and having N_short default coefficients, where N_long>N_short, for quick convergence of the echo canceller at start-up, wherein the default coefficients are replaced by the first N_short coefficients from the first adaptive filter responsive to an improvement in echo return loss enhancement (ERLE) of the first adaptive filter, a second adaptive filter having N_short default coefficients for modeling the direct echo path and providing an indication of double-talk and echo path changes, decision logic for receiving error signal outputs from the first and second adaptive filters and the non-adaptive filter and in response distinguishing between echo path changes and double-talk, and a non-linear processor for attenuating signals responsive to input from the decision logic.
摘要:
An echo canceller comprising a first adaptive filter having N_long coefficients for converging to an echo path, a non-adaptive filter representing a direct echo path portion captured by the first adaptive filter and having N short default coefficients, where N_long>N_short, for quick convergence of the echo canceller at start-up, wherein the default coefficients are replaced by the first N_short coefficients from the first adaptive filter responsive to an improvement in echo return loss enhancement (ERLE) of the first adaptive filter, a second adaptive filter having N short default coefficients for modeling the direct echo path and providing an indication of double-talk and echo path changes, decision logic for receiving error signal outputs from the first and second adaptive filters and the non-adaptive filter and in response distinguishing between echo path changes and double-talk, and a non-linear processor for attenuating signals responsive to input from the decision logic.
摘要:
A digital all-pass filter has an input port leading to an input sum block and a first feed forward path. Within the first feed forward path is a multiplier. The filter also has an output port coupled to an output sum block that receives a signal from the first feed forward path. A first feedback path is also provided from the output port to the input sum block. The first feedback path includes a multiplier therein. Nested within this structure is a first order all-pass filter having a feed forward path including a forward path delay and forward path that is delayed and a feedback path absent a separate delay element and beginning after the forward path delay element.