Abstract:
A displaying method and device. The display device includes a back light module and a display panel. The back light module emits at least M color lights. The display panel includes a plurality of pixel areas arranged in array structure, wherein each pixel area comprises N color filters, and at least one of the color filters is for passing through a plurality of primary color lights. In the displaying method, the back light module provides at least M color lights in a frame time, and a frame is displayed by arranging the M color lights and the N color filters in each pixel area, wherein M≧2 and N≧2. Moreover, the display panel may include an active component array substrate, a liquid crystal layer and a color filter substrate. In addition, any two adjacent pixel areas can share at least one color filter.
Abstract:
A liquid crystal display includes a first substrate and a second substrate, a liquid crystal layer disposed between the first and second substrate, and a backlight module disposed under the second substrate. The first substrate comprises color filters disposed in array, wherein each color filter has a chromaticity-adjusting region; a thickness of the color filters and a size of the chromaticity-adjusting region are adjustable for adjusting the chromaticity of the LCD. The second substrate comprises pixel electrodes corresponding to the color filters. Therefore, the liquid crystal display can easily adjust and perfect the chromaticity of the liquid crystal display under the restrictions of the material of the color filters, the backlight module, and the design thereof.
Abstract:
A display device has a lower substrate, an upper substrate located above and generally parallel with the lower substrate, and a plurality of pixel units located between the lower and upper substrates. Each pixel unit of the display device includes a transmissive area and a transreflective area. The transmissive area allows light to pass through, while the transreflective area includes a light selecting membrane to selectively allow light having a first characteristic to pass through, and reflect light having a second characteristic.
Abstract:
A liquid crystal display includes a first substrate and a second substrate, a liquid crystal layer disposed between the first and second substrate, and a backlight module disposed under the second substrate. The first substrate comprises color filters disposed in array, wherein each color filter has a chromaticity-adjusting region; a thickness of the color filters and a size of the chromaticity-adjusting region are adjustable for adjusting the chromaticity of the LCD. The second substrate comprises pixel electrodes corresponding to the color filters. Therefore, the liquid crystal display can easily adjust and perfect the chromaticity of the liquid crystal display under the restrictions of the material of the color filters, the backlight module, and the design thereof.
Abstract:
A displaying method and device. The display device includes a back light module and a display panel. The back light module emits at least M color lights. The display panel includes a plurality of pixel areas arranged in array structure, wherein each pixel area comprises N color filters, and at least one of the color filters is for passing through a plurality of primary color lights. In the displaying method, the back light module provides at least M color lights in a frame time, and a frame is displayed by arranging the M color lights and the N color filters in each pixel area, wherein M≧2 and N≧2. Moreover, the display panel may include an active component array substrate, a liquid crystal layer and a color filter substrate. In addition, any two adjacent pixel areas can share at least one color filter.
Abstract:
A display device has a lower substrate, an upper substrate located above and generally parallel with the lower substrate, and a plurality of pixel units located between the lower and upper substrates. Each pixel unit of the display device includes a transmissive area and a transreflective area. The transmissive area allows light to pass through, while the transreflective area includes a light selecting membrane to selectively allow light having a first characteristic to pass through, and reflect light having a second characteristic.
Abstract:
A sub-pixel of a liquid crystal display panel includes a first substrate, a second substrate, and a liquid crystal layer formed between the first and second substrates. A color filter layer is formed on the first substrate and includes a first photoresist formed on a transparent region and a reflective region of the sub-pixel for blocking light of wavelengths outside a first range, a second photoresist formed on the reflective region of the sub-pixel for blocking light of wavelengths outside a second range that is different from the first range, and an intermediate area formed between and free of the first and second photoresists.
Abstract:
The invention provides a manufacturing process of transflective TFT-LCD panel (transflective TFT-LCD panel) comprising the following steps: first, form a first conductive layer on the substrate; next, define the first conductive layer to form a gate; after that, form a dielectric layer on the gate; following that, form a channel over the gate; then, form a photo-resist block; form a second conductive layer; next, define the second conductive to form a source and a drain over the gate, and to form a photo-reflective layer on the photo-resist block; after that, form a protection layer thereon; following that, define the protection layer to form a first opening on the photo-reflective layer allowing part of the drain to be exposed, and to form a second opening on the photo-reflective layer allowing part of the photo-reflective layer to be exposed; last, form a transparent electrode being electrically connected to the drain and the photo-reflective layer via the first and the second opening respectively.
Abstract:
A method of fabricating slant reflector with bump structure, at least comprising the steps of: providing a substrate; forming a photosensitivity material layer on the substrate; patterning the photosensitivity material layer to form m groups of pattern (m≧1, m is positive integral), and each group of pattern includes a plurality of bumps with different bottom area; and jointing the bumps to form a slant surface with bump structure. The photosensitivity material layer is either orderly or randomly patterned to form m groups of patterns. The step of patterning the photosensitivity material layer includes exposing and developing. The invention utilizes one photo-mask with particular pattern to fabricate the bump structure in a simple way.
Abstract:
A color filter substrate for multi-view displaying including a substrate, a light shielding-layer, and a color filter layer is provided. The substrate has a first surface, a second surface, and a plurality of concaves. The first surface is opposite to the second surface. The concaves are located at the first surface. The light-shielding layer disposed on the first surface of the substrate defines a plurality of light-transparent openings. The color filter layer has a plurality of sub-pixel areas including at least one first sub-pixel area and at least one second sub-pixel area. A first light is transmitted to a first viewer by passing through one of the light-transparent openings and one of the at least one first sub-pixel area, and simultaneously, a second light is transmitted to a second viewer by passing through the same one of the light-transparent openings and one of the at least one second sub-pixel area.