Abstract:
A method of fabricating a slant reflector with a bump structure, includes the steps of: providing a substrate; forming a layer of photosensitive material on the substrate; patterning the photosensitive material to form a plurality of trapezoidal bumps that have different bottom areas and that are joined to each other at their bottoms; and smoothing the trapezoidal bumps to form a bump structure with an inclined angle. The invention utilizes a photo-mask with a particular pattern and optical diffraction to fabricate the bump structure in a simple way.
Abstract:
A method of fabricating slant reflector with bump structure, at least comprising the steps of: providing a substrate; forming a photosensitivity material layer on the substrate; patterning the photosensitivity material layer to form m groups of pattern (m≧1, m is positive integral), and each group of pattern includes a plurality of bumps with different bottom area; and jointing the bumps to form a slant surface with bump structure. The photosensitivity material layer is either orderly or randomly patterned to form m groups of patterns. The step of patterning the photosensitivity material layer includes exposing and developing. The invention utilizes one photo-mask with particular pattern to fabricate the bump structure in a simple way.
Abstract:
A method of fabricating a semiconductor device includes the following steps. First, a semiconductor substrate is provided, which includes at least a fin structure and at least a gate semiconductor layer disposed thereon. The gate semiconductor layer covers a portion of the fin structure. Then a sacrificial layer is deposited to cover the fin structure entirely. Subsequently, a top surface of the fin structure is exposed from the sacrificial layer through an etching process. A material layer is then deposited, which covers the gate semiconductor layer, the fin structure and the sacrificial layer conformally. Finally, the material layer is etched until the top surface of the fin structure is exposed and a first spacer is concurrently formed on side surfaces of the gate semiconductor layer.
Abstract:
A method for fabricating a metal gate transistor is disclosed. The method includes the steps of: providing a substrate having a first transistor region and a second transistor region; forming a first metal-oxide semiconductor (MOS) transistor on the first transistor region and a second MOS transistor on the second transistor region, in which the first MOS transistor includes a first dummy gate and the second MOS transistor comprises a second dummy gate; forming a patterned hard mask on the second MOS transistor, in which the hard mask includes at least one metal atom; and using the patterned hard mask to remove the first dummy gate of the first MOS transistor.
Abstract:
A semiconductor device includes a semiconductor substrate and a plurality of transistors. The semiconductor substrate includes at least an iso region (namely an open region) and at least a dense region. The transistors are disposed in the iso region and the dense region respectively. Each transistor includes at least a source/drain region. The source/drain region includes a first epitaxial layer having a bottom thickness and a side thickness, and the bottom thickness is substantially larger than or equal to the side thickness.
Abstract:
The present invention provides a non-planar FET which includes a substrate, a fin structure, a gate and a gate dielectric layer. The fin structure is disposed on the substrate. The fin structure includes a first portion adjacent to the substrate wherein the first portion shrinks towards a side of the substrate. The gate is disposed on the fin structure. The gate dielectric layer is disposed between the fin structure and the gate. The present invention further provides a method of manufacturing the non-planar FET.
Abstract:
A method for manufacturing a multi-gate transistor device includes providing a semiconductor substrate having a first patterned semiconductor layer formed thereon, sequentially forming a gate dielectric layer and a gate layer covering a portion of the first patterned semiconductor layer on the semiconductor substrate, removing a portion of the first patterned semiconductor layer to form a second patterned semiconductor layer, and performing a selective epitaxial growth process to form an epitaxial layer on a surface of the second patterned semiconductor layer.
Abstract:
A method of fabricating a through silicon via (TSV) structure, in which, a patterned mask is formed on a substrate, the patterned mask has an opening, a spacer-shaped structure is formed on a sidewall of the opening, and a via hole having a relatively enlarged opening is formed by etching the spacer-shaped structure and the substrate through the opening after the spacer-shaped structure is formed. A TSV structure, in which, a via hole has an opening portion and a body portion, the opening portion is a relatively enlarged opening and has a tapered shape having an opening size of an upper portion greater than an opening size of a lower portion.
Abstract:
A semiconductor device includes a semiconductor substrate and a plurality of transistors. The semiconductor substrate includes at least an iso region (namely an open region) and at least a dense region. The transistors are disposed in the iso region and the dense region respectively. Each transistor includes at least a source/drain region. The source/drain region includes a first epitaxial layer having a bottom thickness and a side thickness, and the bottom thickness is substantially larger than or equal to the side thickness.
Abstract:
A semiconductor process includes the following steps. An interlayer is formed on a substrate. A first metallic oxide layer is formed on the interlayer. A reduction process is performed to reduce the first metallic oxide layer into a metal layer. A high temperature process is performed to transform the metal layer to a second metallic oxide layer.