METHOD FOR DETERMINING FAVORABLE TIME WINDOW OF INFILL WELL IN UNCONVENTIONAL OIL AND GAS RESERVOIR

    公开(公告)号:US20210003731A1

    公开(公告)日:2021-01-07

    申请号:US16790801

    申请日:2020-02-14

    Abstract: A method for determining a favorable time window of an infill well of an unconventional oil and gas reservoir, which comprises the following steps: S1, establishing a three-dimensional geological model with physical properties and geomechanical parameters; S2, establishing a natural fracture network model in combination with indoor core-logging-seismic monitoring; S3, calculating complex fractures in hydraulic fracturing of parent wells; S4, establishing an unconventional oil and gas reservoir model and calculating a current pore pressure field; S5, establishing a dynamic geomechanical model and calculating a dynamic geostress field; S6, calculating complex fractures in horizontal fractures of the infill well in different production times of the parent wells based on pre-stage complex fractures and the current geostress field; S7, analyzing a microseismic event barrier region and its dynamic changes in infill well fracturing; and S8, analyzing the productivity in different infill times, and determining an infill time window.

    OPTIMIZATION DESIGN METHOD FOR VOLUMETRIC FRACTURING CONSTRUCTION PARAMETERS OF INFILLED WELL OF UNCONVENTIONAL OIL AND GAS RESERVOIR

    公开(公告)号:US20210003727A1

    公开(公告)日:2021-01-07

    申请号:US16580936

    申请日:2019-09-24

    Abstract: The present invention discloses an optimization design method for volumetric fracturing construction parameters of an infilled well of an unconventional oil and gas reservoir. The method comprises the following steps: S1, establishing a three-dimensional geological model with physical and geomechanical parameters; S2, establishing a natural fracture network model through integration of rock core-logging-seismic data; S3, generating old well hydraulic fracturing complex fractures based on the natural crack model; S4. establishing a three-dimensional shale gas reservoir seepage model; S5, establishing a three-dimensional geomechanical model; S6, analyzing and calculating a dynamic geostress field; S7, establishing a numerical model for horizontal fracturing complex fractures in the infilled well based on the calculation results of old well complex fractures and dynamic geostress; and S8, performing optimization design on volumetric fracturing construction parameters of the infilled well. The method of the present invention has the following beneficial effects: the effects of long-term exploitation of shale reservoirs in which natural fractures are developed on volumetric fracturing of the infilled well can be reflected accurately, the fracturing construction parameters are subjected to optimization design, the fracturing effect is improved effectively, and the single-well capacity is increased.

Patent Agency Ranking