Abstract:
Disclosed is a magnetic force generator for controlling an external magnetic field to magnetize a micro magnetic device and a microbead; the micro magnetic device for generating an internal magnetic field when magnetized by the external magnetic field, and controlling movement of the microbead according to a direction of magnetization; and the microbead which immobilizes a biomolecule on a surface thereof and of which movement is controlled by the internal magnetic field generated as the micro magnetic device is magnetized.
Abstract:
Provided are a barcode nano-wire for decoding a hard magnetic segment by using highly sensitive magnetic sensors and a bio-sensing system using the barcode nano-wire. Integration of hard magnetic and non-magnetic segments produces the barcode nanowire and magnetic segments are detected using highly sensitive magnetoresistance sensors. The non-magnetic segment uses a non-magnetic material and a specific biomolecule for bioanalysis is immobilized at a specific portion of the barcode nano-wire. The hard magnetic material has an advantage of higher coercivity and high remanence magnetization, which is considered as an important parameter in selecting the material. The hard magnetic segments produce distinguishable strong stray fields for individually detecting segments using conventional magnetic sensors for multiplexed bioanalysis.
Abstract:
Provided is a magnetic sensor for detecting a magnetic field. The magnetic sensor includes a magnetic layer of a closed loop shape; a pair of current terminals which face each other contacting with the closed loop and through which current is input/output; and a pair of voltage terminals which face each other contacting with the closed loop and from which output voltage is detected. Both an anisotropic magnetoresistance effect (AME) and a planar Hall effect (PHE) contribute to the output voltage and a hysteresis of the output voltage is eliminated by exchange coupling of a ferromagnetic layer by a ferromagnetic-antiferromagnetic layer structure and a ferromagnetic-metal-antiferromagnetic layer structure. Accordingly, it is possible to minimize a hysteresis due to a demagnetization factor of the closed loop, stabilize the output voltage of the magnetic sensor and enhance sensitivity.
Abstract:
Provided are a barcode nano-wire for decoding a hard magnetic segment by using highly sensitive magnetic sensors and a bio-sensing system using the barcode nano-wire. Integration of hard magnetic and non-magnetic segments produces the barcode nanowire and magnetic segments are detected using highly sensitive magnetoresistance sensors. The non-magnetic segment uses a non-magnetic material and a specific biomolecule for bioanalysis is immobilized at a specific portion of the barcode nano-wire. The hard magnetic material has an advantage of higher coercivity and high remanence magnetization, which is considered as an important parameter in selecting the material. The hard magnetic segments produce distinguishable strong stray fields for individually detecting segments using conventional magnetic sensors for multiplexed bioanalysis.
Abstract:
Provided is a magnetic sensor for detecting a magnetic field. The magnetic sensor includes a magnetic layer of a closed loop shape; a pair of current terminals which face each other contacting with the closed loop and through which current is input/output; and a pair of voltage terminals which face each other contacting with the closed loop and from which output voltage is detected. Both an anisotropic magnetoresistance effect (AME) and a planar Hall effect (PHE) contribute to the output voltage and a hysteresis of the output voltage is eliminated by exchange coupling of a ferromagnetic layer by a ferromagnetic-antiferromagnetic layer structure and a ferromagnetic-metal-antiferromagnetic layer structure. Accordingly, it is possible to minimize a hysteresis due to a demagnetization factor of the closed loop, stabilize the output voltage of the magnetic sensor and enhance sensitivity.