摘要:
This disclosure provides systems, methods and apparatus for fabricating thin film transistor (TFT) devices. In one aspect, a substrate having a source area, a drain area, and a channel area is provided. Metal cations are implanted in the oxide semiconductor layer overlying the source area and the drain area of the substrate. The metal cation implantation forms a doped n-type oxide semiconductor in the oxide semiconductor layer overlying the source area and the drain area of the substrate.
摘要:
A display apparatus may include a multi-state IMOD, such as an analog IMOD (AIMOD), a 3-state IMOD (such as having a white state, a black state and one colored state) or a 5-state IMOD (such as having a white state, a black state and three colored states). The multi-state IMOD may include a movable reflective layer and an absorber stack. The absorber stack may include a first absorber layer having a first absorption coefficient and a first absorption peak at a first wavelength, a second absorber layer having a second absorption coefficient and a second absorption peak at a second wavelength, and a third absorber layer having a third absorption coefficient and a third absorption peak at a third wavelength. The first, second and third absorption layers may have absorption levels that drop to nearly zero at the center of each neighboring absorber layer's absorption peak.
摘要:
This disclosure provides systems, methods and apparatus for a thin film stack with surface-conditioning buffer layers. In one aspect, the thin film stack includes a plurality of thin film layers each having a thickness greater than about 10 nm and a plurality of surface-conditioning buffer layers each having a thickness between about 1 nm and about 10 nm. The surface-conditioning buffer layers are alternatingly disposed between the thin film layers. Each of the surface-conditioning buffer layers are formed with the same or substantially the same thickness and composition. In some implementations, the surface-conditioning buffer layers are formed by atomic layer deposition.
摘要:
This disclosure provides systems, methods and apparatus for a thin film stack with surface-conditioning buffer layers. In one aspect, the thin film stack includes a plurality of thin film layers each having a thickness greater than about 10 nm and a plurality of surface-conditioning buffer layers each having a thickness between about 1 nm and about 10 nm. The surface-conditioning buffer layers are alternatingly disposed between the thin film layers. Each of the surface-conditioning buffer layers are formed with the same or substantially the same thickness and composition. In some implementations, the surface-conditioning buffer layers are formed by atomic layer deposition.
摘要:
This disclosure provides systems, methods and apparatus for an electromechanical systems reflective display device. In one aspect, an electromechanical systems display device includes a reflective layer and an absorber layer. The absorber layer is spaced apart from the reflective layer to define a cavity between the absorber layer and the reflective layer. The absorber layer is capable of transmitting light into the cavity, absorbing light, and reflecting light, and includes a metal layer. A plurality of matching layers are on a surface of the absorber layer facing away from the cavity, the plurality of matching layers including a first matching layer disposed on the absorber layer and a second matching layer disposed on the first matching layer.
摘要:
This disclosure provides systems, methods and apparatus for fabricating thin film transistor (TFT) devices. In one aspect, a substrate having a source area, a drain area, and a channel area is provided. Metal cations are implanted in the oxide semiconductor layer overlying the source area and the drain area of the substrate. The metal cation implantation forms a doped n-type oxide semiconductor in the oxide semiconductor layer overlying the source area and the drain area of the substrate.
摘要:
A display apparatus may include a multi-state IMOD, such as an analog IMOD (AIMOD), a 3-state IMOD (such as having a white state, a black state and one colored state) or a 5-state IMOD (such as having a white state, a black state and three colored states). The multi-state IMOD may include a movable reflective layer and an absorber stack. The absorber stack may include a first absorber layer having a first absorption coefficient and a first absorption peak at a first wavelength, a second absorber layer having a second absorption coefficient and a second absorption peak at a second wavelength, and a third absorber layer having a third absorption coefficient and a third absorption peak at a third wavelength. The first, second and third absorption layers may have absorption levels that drop to nearly zero at the center of each neighboring absorber layer's absorption peak.