Abstract:
One embodiment of a method of performing a test on a core sample comprises transferring at least a portion of a core sample from a first core containment vessel to a second core containment vessel. The core sample is maintained at a substantially equivalent pressure or placed under a higher pressure during the transfer of the core sample from the first vessel to the second vessel. The method further comprises performing a test on the core sample in a measurement region of the second vessel.
Abstract:
A sensor and a method are disclosed for analyzing fluid and/or rock samples from a subsurface formation. Embodiments of the sensor and method utilize an array of magnets arranged in a specific way. The array and its arrangement may allow for NMR analysis of multiple samples or analysis of fluid samples which were not possible with existing technology. Further details and advantages of various embodiments of the method are described in more detail herein.
Abstract:
A method of transferring at least one subterranean core sample from a retrieval vessel to a testing vessel can include removing at least one pressure barrier on the retrieval vessel using a linear actuator while maintaining a sampling pressure on the at least one subterranean core sample at which the at least one subterranean core sample is taken from a subterranean formation. The method can also include pressurizing the testing vessel to the sampling pressure using the linear actuator, and transferring the at least one subterranean core sample from the retrieval vessel to the testing vessel. The method can further include sealing the testing vessel with the at least one subterranean core sample at the sampling pressure, where the testing vessel allows the at least one subterranean core sample to be tested while the at least one subterranean core sample is maintained at the sampling pressure.
Abstract:
A sensor and a method are disclosed for analyzing fluid and/or rock samples from a subsurface formation. Embodiments of the sensor and method utilize an array of magnets arranged in a specific way. The array and its arrangement may allow for NMR analysis of multiple samples or analysis of fluid samples which were not possible with existing technology. Further details and advantages of various embodiments of the method are described in more detail herein.
Abstract:
A device including a plurality of motors is disclosed. The device includes a body comprising a plurality of magnet arrays. Each magnet array comprises a plurality of magnets which define a polygon and the plurality of magnets are arranged in a semi-Halbach configuration. The polygons of the plurality of magnet arrays form a tessellating pattern in which the magnet arrays each share at least one magnet with another one of the magnet arrays. Each magnet is configured to be rotatable relative to the body, or in the case of coils as magnets, the input of each coil can be manipulated to replicate the same or similar effect. The device further comprises a plurality of rotors, wherein each magnet array is configured to receive a rotor rotatable relative to the body.
Abstract:
A disclosed method for characterizing gas adsorption on a rock sample includes: measuring a nuclear magnetic resonance (NMR) response of the rock as a function of surrounding gas pressure along an isotherm; transforming the NMR response to obtain a Langmuir pressure distribution of gas adsorption on the rock sample; and displaying the Langmuir pressure distribution. The Langmuir pressure distribution may be shown in one dimension (e.g., contribution to signal response versus Langmuir pressure), or may be combined with additional pressure-dependencies such as spin-lattice relaxation time (T1), spin-spin relaxation time (T2), and chemical shift (δ) to form a multi-dimensional distribution. The method can further include: identifying peaks in the Langmuir pressure distribution; and associating a gas storage mechanism and capacity with each peak. It may still further include: exposing the rock sample to a treatment fluid to obtain an altered sample; repeating said measuring and transforming operations with the altered sample; and comparing the Langmuir pressure distributions to determine effects of the treatment.