摘要:
An automatic capturing method of a panoramic image for a digital camera panoramic image is presented. In the method, a motion vector value of an alignment image selected from a first image captured by the digital camera in a real-time image is continuously tracked, calculated, and accumulated to obtain an accumulated motion vector value. When the accumulated motion vector value reaches a preset threshold value, the digital camera is automatically driven to capture a second image, so as to stitch and blend the first image and the second image into a panoramic image. Through the automatic image capture mode, operations for capturing the panoramic image are simplified.
摘要:
A method for adjusting a shooting condition of a digital camera through motion detection is applied to determine a shooting parameter of the digital camera. The adjusting method includes the following steps. At least two consecutive images, namely a first pre-capture image and a second pre-capture image, are selected. The first pre-capture image and the second pre-capture image are divided into a plurality of selection blocks. A motion vector of each selection block is calculated. The motion vector of each selection block is used to generate a background dominant motion vector of the camera sloshing and a self-movement vector of the shot object. The background dominant motion vector is subtracted from the self-movement vector of the shot object, so as to obtain a corrected foreground motion vector. According to the size of the corrected foreground motion vector, the corresponding shooting parameter is determined.
摘要:
A method for automatically shooting a panoramic image by a digital image pickup device is described. In the method, a pixel error value between a real-time image and an alignment image overlapped with each other is continuously compared and calculated. When the pixel error value is smaller than a preset threshold value, the digital image pickup device is automatically driven to shoot a second image to be stitched and blended with a previous image into a panoramic image. The shooting of the panoramic image is simplified by using automatic image capturing.
摘要:
A noise elimination method of an image sequence is described. During a color separation of a raw image data captured by an image capturing element, 3D filtering is integrated. First, the raw image data is converted into a gray-scaled full luma image, an interframe filtering process is performed to eliminate possible noises in the gray-scaled full luma image, and an interpolation process is performed with the raw image data. During the implementation, an adaptive frame average filtering process is also performed to obtain a preferred image filtering result through an appropriate filtering manner. Therefore, an adaptive interframe interpolation for eliminating noises is to prevent noises or artifacts generated by the noises from affecting the subsequent image processing.
摘要:
A method for beautifying a human face in a digital image is adapted to beautify a face area of an input image. The method includes setting a selection window to select a partial image area in the input image; setting a target pixel in the selection window, and setting other pixels as comparison pixels; performing a detail checking process according to a variance between the target pixel; performing a luminance checking process on the target pixel to determine; performing a nonlinear filtering process to filter the target pixel by using a nonlinear filter to generate a filtered value, and providing a mixing ratio to mix the target pixel with the filtered value at the mixing ratio to generate a completed pixel; replacing the original target pixel with the completed pixel; and repeating the above steps until all pixels are completed.
摘要:
An image compression method is used for processing a plurality of pixels of an image. The image compression method includes the steps of receiving N pixels; analyzing the N pixels and generating a content type corresponding to the N pixels; obtaining a quantization parameter and a coding parameter corresponding to the N pixels according to the content type and a currently available buffer space value; obtaining N quantized differences corresponding to the N pixels through a prediction and quantization way according to values of the N pixels and the quantization parameter; and encoding the N quantized differences according to the N quantized differences and the coding parameter.
摘要:
A compression method is used for processing an image having a plurality of pixels, in which an image width of the image is W. The compression method includes the steps of selecting N continuous pixels from the image, where N is a positive integer greater than or equal to 2 and is less than the image width W; performing differential pulse code modulation (DPCM) so as to obtain N non-negative differences corresponding to the N pixels according to values of the N pixels; calculating to obtain a coding parameter according to the N non-negative differences; and coding the N non-negative differences according to the coding parameter.
摘要:
An image compression method s used for processing a plurality of pixels of an image. The image compression method includes the steps of receiving N successive pixels; obtaining N pixel differences and N map differences corresponding to the N pixels according to values of the N pixels through differential pulse code modulation; calculating to obtain a quantization reference value corresponding to the N pixels according to the N pixel differences; obtaining a quantization parameter corresponding to the N pixels according to the quantization reference value; and encoding the N map differences according to the quantization parameter.
摘要:
A color interpolation method for a digital image is described, includes the following steps. Edge information is generated according to the Bayer pattern. A Bayer pattern image is processed by a horizontal band-pass filter and a vertical band-pass filter to generate a horizontal edge signal and a vertical edge signal. A weight process implements a weight adjustment on the horizontal edge signal and the vertical edge signal to generate a luminance signal and outputs the luminance signal to a subtraction unit. The subtraction unit carries out an operation according to the Bayer pattern image and an output result of the weight process to generate a chrominance pattern. The chrominance pattern is compensated through a chrominance interpolation process, so as to generate image signal patterns of different colors. The image signal patterns of different colors are output to an adder for an add operation, thereby outputting a complete color image.