Abstract:
A battery core and a method of manufacturing the same are disclosed herein. The battery core includes a first electrode plate and a second electrode plate. The first electrode plate includes a substrate and a first active material. A first portion of the first active material is formed on a first area of the substrate, and a second portion of the first active material is formed on a second area of the substrate. The second electrode plate includes first and second substrates disconnected from each other, and a second active material. The first and second substrates are positioned corresponding to the first and second first areas respectively. A first portion of the second active material is formed on the first substrate, and a second portion of the second active material is formed on the second substrate.
Abstract:
A package carrier includes a substrate, first and second insulation layers, first and second patterned circuit layers, at least one first and second conductive through holes, a heat dissipation channel, an adhesive layer and a heat conducting element. The first and second patterned circuit layers are respectively disposed on the first and second insulation layers which are respectively disposed on upper and lower surfaces of the substrate. The heat dissipation channel at least passes through the first insulation layer, the first and second patterned circuit layers, and the substrate. The first and second conductive through holes electrically connect with the substrate, the first and second patterned circuit layers. At least two opposite side surfaces of the heat conducting element each includes at least one convex portion or at least one concave portion. The heat conducting element is mounted in the heat dissipation channel via the adhesive layer.
Abstract:
A method of manufacturing a cover structure is provided. A first insulating layer is provided. The first insulating layer has a first surface and a second surface opposite to each other. A second insulating layer is provided. The second insulating layer has a third surface and a fourth surface opposite to each other and an opening passing through the third surface and the fourth surface. A thickness of the second insulating layer is greater than a thickness of the first insulating layer. The first insulating layer and the second insulating layer are laminated to each other, so that the third surface of the second insulating layer connects to the second surface of the first insulating layer. A cavity is defined by the opening of the second insulating layer and the first insulating layer. A metal layer is formed on the cavity.
Abstract:
A black ink composition is provided. The black ink composition includes a dispersive black colorant; less than 1 wt % of a glycol ether compound based on total weight of the black ink composition; a solvent; and water. The black ink composition of the present invention is free of surfactants and has excellent compatibility with a nozzle, and thus provides good smoothness in printing and high-quality image.
Abstract:
An offset calibration method is provided. Two input terminals of an equalizer are switched to a common voltage at a first time point, wherein the equalizer generates a first equalized signal and a second equalized signal according to the common voltage. It is determined whether a first offset voltage is present in the equalizer according to the first and second equalized signals generated from the common voltage. If the first offset voltage is determined to be present in the equalizer, a first compensation voltage is provided to the equalizer.
Abstract:
A portable device with password verification function includes several input units, a storage unit and a processing unit. The processing unit is electrically connected with the input units and the storage unit. Each of the input units is different from others. Password information is stored in the storage unit. The processing unit includes a receiving module and a password verification module. The receiving module receives several input signals from the input units respectively. The password verification module verifies if the input signals match the password information.
Abstract:
A thermal cutoff circuit for an electronic device including a power unit, a thermal sensor, a logic unit, and a power switch unit is provided. The power unit includes a power switch for powering up the thermal cutoff circuit with a supply voltage in response to a user event. The thermal sensor provides an active thermal sense signal and an inactive thermal sense signal when a temperature of the electronic device exceeds a threshold and does not exceed the threshold, respectively. The logic unit provides an inactive cutoff signal and provides an active cutoff signal respectively according to the inactive thermal sense signal and the active thermal sense signal. The power switch unit powers the electronic device up according to the inactive cutoff signal and stops powering up the electronic device according to the active thermal sense signal.
Abstract:
A laser capture microdissection system includes a laser illuminator, a fiber and an electric moving stage. The fiber has a probe terminal and a coupling terminal for being coupled to the laser illuminator. The electric moving stage includes a fiber probe holder, a driving mechanism for vertical shift, a stage unit, a driving mechanism for horizontal shift and an electronic control unit. The driving mechanism for vertical shift serves for driving the fiber probe holder to shift in microscale. The stage unit has a nanoscale shift controller, a placing portion, wherein the nano-scale shift controller is connected to the placing portion, and the placing portion is located under the fiber probe holder. The driving mechanism for horizontal shift serves for driving the stage unit to shift in microscale. The electronic control unit is electrically connected to the nanoscale shift controller and the driving mechanism for horizontal shift.
Abstract:
In an embodiment, a starch-based thermoplastic composite is provided. The starch-based thermoplastic composite includes thermoplastic starch (TPS), polycarbonate (PC) and acrylonitrile butadiene styrene (ABS), wherein the polycarbonate has a weight ratio of 15-60% in the starch-based thermoplastic composite. The starch-based thermoplastic composite further includes an impact modifier and a compatibilizer.
Abstract:
A method for incubating fruiting bodies of Antrodia cinnamomea is disclosed. The method comprises steps of: (a) obtaining a hymenium slice from a fruiting body of Antrodia cinnamomea; (b) transferring the hymenium slice to a selective culture medium for incubation to obtain an isolated strain; (c) transferring the isolated strain to a bagasse culture medium for incubation; (d) subjecting proliferation by liquid culture or solid culture to obtain large-scale liquid spawn or solid spawn; (e) inoculating a wood segment with the liquid spawn or the solid spawn and subjecting incubation; and (f) re-inoculating the wood segment with mixed single-spore colonies of Antrodia cinnamomea and subjecting incubation until fruiting bodies are produced.