Abstract:
A tubeless light-emitting diode (LED) based lighting device includes at least one base, at least one LED lighting module, and at least one control circuit. The base includes a heat dissipation body. The LED lighting module is mounted to the base so that the base provides the LED lighting module with the functions of retention and heat dissipation. The control circuit is mounted to the base and is electrically connected to power wiring of the LED lighting module for ON/OFF switching of the LED lighting module and supplying of operation power. As such, a tubeless lighting device that emits light in a power saving manner and is constructed in a volume reduced manner is provided.
Abstract:
A mask pattern including a group of small-pitched contact hole features with pitch being less than a predetermined value and isolated contact hole features with pitch being greater than the predetermined value is provided. The mask pattern is split into two sub-mask patterns, one having about half of the group of the small-pitched contact hole features and about half of the isolated contact hole features, the other having the rest of the group of the small-pitched contact hole features and the rest of the isolated contact hole features. Two phase shifting masks are formed, each phase shifting mask comprising one of the two sub-mask patterns and dummy features disposed in proximity to each of the contact hole features. Successively, each of the two phase shifting masks is positioned above the substrate. Each phase shifting mask is exposed successively on a photosensitive layer on the substrate.
Abstract:
A chrome-less mask inspection method is provided. The chrome-less mask at least includes a transparent region and a phase shift region. The method includes providing a database having a mask database corresponding to the chrome-less mask. The mask database further includes a frame line pattern having enclosed area and pattern that corresponds to enclosed area and pattern of the phase shift region of the chrome-less mask and a first inspection signal pattern generated by the mask database. An inspecting device is also provided to inspect a second inspection signal pattern from the chrome-less mask. Furthermore, scanning location of the second inspection signal pattern corresponds with scanning location of the first inspection signal pattern. Thereafter, the first inspection signal pattern and the second inspection signal pattern is compared and any differences are registered.
Abstract:
An unlanded process for manufacturing semiconductor circuits. Optical proximity correction of the electrical connection region of a conductive line is carried out to increase the area so that alignment accuracy between the conductive line and a via/contact improves. Optical proximity correction of the photomask for forming a conductive line pattern is carried out by first determining the electrical connection regions in the conductive line pattern. The regions are expanded equi-directionally or extended outward direction along the edges of the conductive line to form magnified regions. Overlapping regions between the original conductive line pattern and the magnified regions, regions outside the conductive line pattern as well as regions too close to neighboring conductive line pattern are removed. The final magnified regions and the original conductive line pattern are combined to obtain an optical proximity corrected photomask.
Abstract:
For a dense-line mask pattern, if the ratio of space width to line width is larger than 2.0 and the size of the line width is less than the exposure wave length, or for an iso-line mask pattern, if the size of the line width is less than the exposure wave length, assist features should be added and OAI should be used to increase the process window. For a dense-line mask pattern, if the ratio of space width to line width is smaller than 2.0, or for an iso-line mask pattern, if the size of the line width is larger than the exposure wavelength, no assist feature should be added.
Abstract:
A method of optical proximity correction. A main pattern is provided. The main pattern has a critical dimension. When the critical dimension is reduced to reach a first reference value or below, a serif/hammerhead is added onto the main pattern. When the critical dimension is further reduced to a second reference value or below, an assist feature is added onto the main pattern. The corrected pattern is then transferred to a layer on wafer with an improved fidelity.
Abstract:
An attenuated Phase Shift Mask (PSM) blank and an attenuated Phase Shift Mask (PSM), and a method by which the attenuated Phase Shift Mask (PSM) blank and the attenuated Phase Shift Mask (PSM) may be formed. To form the attenuated Phase Shift Mask (PSM) blank there is first provided a transparent substrate. Formed upon the transparent substrate is a tantalum-silicon oxide blanket semi-transparent shifter layer which has the formula,Ta.sub.x Si.sub.y O.sub.1-x-ywherein 0.1
Abstract:
A conductive line structure is defined with an OPC photomask and is suitably applied to a semiconductor device. The conductive line structure includes a first conductive line and a second conductive line. The first conductive line includes a first line body oriented in the X-direction of a plane coordinate system, a first end portion at one end of the first line body slanting toward the Y-direction of the plane coordinate system, and a second end portion at the other end of the first line body also slanting toward the Y-direction. The second conductive line arranged in an end-to-end manner with the first conductive line includes a second line body oriented in the X-direction, a third end portion at one end of the second line body slanting toward the Y-direction, and a fourth end portion at the other end of the second line body also slanting toward the Y-direction.
Abstract:
A photomask pattern on a substrate is provided. The photomask pattern comprises a main pattern and a sub-resolution assistant feature. The sub-resolution assistant feature is located on the sides of the main pattern. Furthermore, the sub-resolution assistant feature comprises a first assistant feature and a second assistant feature. The first assistant feature is formed close to the main pattern and the second assistant feature is formed further away from the main pattern but adjacent to the first assistant feature. There is a phase difference of 180° between the first assistant feature and the main pattern. Similarly, there is a phase difference of 180° between the second assistant feature and the first assistant feature. Since the main pattern is bordered by reverse-phase assistant feature, exposure resolution of the photomask is increased.
Abstract:
A lithography method for forming a plurality of patterns in a photoresist layer. A phase shift mask including a plurality of transparent main features, a plurality of first phase shift transparent regions, and a plurality of second phase shift transparent regions is provided. Each transparent main feature is surrounded by the first phase shift transparent regions and the second phase shift transparent regions interlaced contiguously along a periphery of the transparent main feature. Each of the first phase shift transparent regions has a phase shift relative to each of the second phase shift transparent regions. An exposure process is performed to irradiate the phase shift mask with light so that the patterns corresponding to the transparent main features are formed in the photoresist layer.