摘要:
An access point (e.g., a femto cell) that is connected in an active call with an access terminal may cooperate with that access terminal or another access terminal to derive timing information from one or more neighboring access points (e.g., macro access points). In addition, an access point may cooperate with an idle access terminal to derive timing information from one or more neighboring access points. For example, an access terminal may determine the difference between pilot transmission timing or frame transmission timing of a femto cell and a macro cell, and report this timing difference to the femto cell. Based on this timing difference, the femto cell may adjust the timing and/or frequency of its transmissions so that these transmissions are synchronized in time and/or frequency as per network operation requirements.
摘要:
An access point (e.g., a femto cell) that is connected in an active call with an access terminal may cooperate with that access terminal or another access terminal to derive timing information from one or more neighboring access points (e.g., macro access points). In addition, an access point may cooperate with an idle access terminal to derive timing information from one or more neighboring access points. For example, an access terminal may determine the difference between pilot transmission timing or frame transmission timing of a femto cell and a macro cell, and report this timing difference to the femto cell. Based on this timing difference, the femto cell may adjust the timing and/or frequency of its transmissions so that these transmissions are synchronized in time and/or frequency as per network operation requirements.
摘要:
An access point (e.g., a femto cell) that is connected in an active call with an access terminal may cooperate with that access terminal or another access terminal to derive timing information from one or more neighboring access points (e.g., macro access points). In addition, an access point may cooperate with an idle access terminal to derive timing information from one or more neighboring access points. For example, an access terminal may determine the difference between pilot transmission timing or frame transmission timing of a femto cell and a macro cell, and report this timing difference to the femto cell. Based on this timing difference, the femto cell may adjust the timing and/or frequency of its transmissions so that these transmissions are synchronized in time and/or frequency as per network operation requirements.
摘要:
An access point (e.g., a femto cell) that is connected in an active call with an access terminal may cooperate with that access terminal or another access terminal to derive timing information from one or more neighboring access points (e.g., macro access points). In addition, an access point may cooperate with an idle access terminal to derive timing information from one or more neighboring access points. For example, an access terminal may determine the difference between pilot transmission timing or frame transmission timing of a femto cell and a macro cell, and report this timing difference to the femto cell. Based on this timing difference, the femto cell may adjust the timing and/or frequency of its transmissions so that these transmissions are synchronized in time and/or frequency as per network operation requirements.
摘要:
A dynamic shared forward link channel (or “data” channel) is used to send multicast data to a group of wireless devices, e.g., using a common long code mask for the data channel. Reference power control (PC) bits are also sent on the data channel and used for signal quality estimation. A shared forward link control channel is used to send user-specific signaling to individual wireless devices, e.g., using time division multiplexing (TDM) and a unique long code mask for each wireless device. A shared forward link indicator channel is used to send reverse link (RL) PC bits to the wireless devices, e.g., using TDM. The data channel is jointly power controlled by all wireless devices receiving the data channel. The control and indicator channels are individually power controlled by each wireless device such that the signaling and RL PC bits sent on these channels for the wireless device are reliably received.
摘要:
Techniques for coherent demodulation in the presence of phase discontinuities is described. In the exemplary embodiment, times when phase discontinuities occur are known apriori by a receiver in which demodulation is being performed. In an alternate embodiment, the discontinuity location is signaled to the receiver in advance by the transmitter which generates the signals being demodulated. A pilot signal is prepared for optimal coherent demodulation by the use of two filters: one capable of withstanding the effects of phase discontinuity; a second providing superior filtering performance than the first so long as phase discontinuities are not present. Both filters are simultaneously operated. However, the superior performing filter is selected for use in demodulation whenever possible.
摘要:
The punctured pilot channel comprises information symbols of uncertain sign punctured into a sequence of pilot channel symbols of predetermined sign. The apparatus includes an information sign demodulation circuit for determining the sign of the information symbols in response to the pilot channel symbols. A continuous pilot generator generates a non-punctured pilot channel of predetermined sign from the information symbols and the pilot channel symbols. In a first embodiment, the information sign demodulator further comprises a dot product circuit for calculating a dot product of the pilot channel symbols and the punctured information symbols, and a threshold comparator for comparing the dot product to a predetermined threshold.
摘要:
A forward link repeater delay watermarking (FLRDWM) system and method that enable accurate position location of mobile stations in areas where repeaters are present by watermarking repeated signals with repeater information. A repeater watermarks a forward link signal with a (unique or non-unique) time delay modulation waveform watermark every time a signal passes through the repeater. A mobile station detects and/or identifies the time delay watermark on the forward link signal to determine repeater information that aids the network position determination entity or mobile station position location system in determining position location using AFLT and/or A-GPS systems. A forward link time delay watermarking system can be implemented to achieve low impact on FL and AFLT performance, favorable detection and identification probabilities, and short time-to-detect/identify.
摘要:
A system for measuring a rise-over-thermal (RoT) characteristic in a communication network includes controlling a transmitting station to maintain its transmit power at a substantially constant level for a first time interval, and measuring a first received power level. The transmitting station is then controlled to adjust its transmit power by a selectable amount for a second time interval, and a second received power level is measured. The first and second received power levels are then processed to determine the RoT characteristic.
摘要:
A system for measuring a rise-over-thermal (RoT) characteristic in a communication network includes controlling a transmitting station to maintain its transmit power at a substantially constant level for a first time interval, and measuring a first received power level. The transmitting station is then controlled to adjust its transmit power by a selectable amount for a second time interval, and a second received power level is measured. The first and second received power levels are then processed to determine the RoT characteristic.