摘要:
According to one aspect of the present disclosure, a method and technique for job distribution within a grid environment is disclosed. The method includes: receiving jobs at a submission cluster for distribution of the jobs to at least one of a plurality of execution clusters, each execution cluster comprising one or more execution hosts; determining resource capacity corresponding to each execution cluster; determining resource requirements for the jobs; dynamically determining a pending job queue length for each execution cluster based on the resource capacity of the respective execution clusters and the resource requirements of the jobs; and forwarding jobs to the respective execution clusters according the determined pending job queue length for the respective execution cluster.
摘要:
According to one aspect of the present disclosure, a method and technique for job distribution within a grid environment is disclosed. The method includes: receiving jobs at a submission cluster for distribution of the jobs to at least one of a plurality of execution clusters, each execution cluster comprising one or more execution hosts; determining resource capacity corresponding to each execution cluster; determining resource requirements for the jobs; dynamically determining a pending job queue length for each execution cluster based on the resource capacity of the respective execution clusters and the resource requirements of the jobs; and forwarding jobs to the respective execution clusters according the determined pending job queue length for the respective execution cluster.
摘要:
According to one aspect of the present disclosure, a method and technique for job distribution within a grid environment is disclosed. The method includes: receiving jobs at a submission cluster for distribution of the jobs to at least one of a plurality of execution clusters, each execution cluster comprising one or more execution hosts; determining resource attributes corresponding to each execution host of the execution clusters; grouping, for each execution cluster, execution hosts based on the resource attributes of the respective execution hosts; defining, for each grouping of execution hosts, a mega-host for the respective execution cluster, the mega-host for a respective execution cluster defining resource attributes based on the resource attributes of the respective grouped execution hosts; determining resource requirements for the jobs; and identifying candidate mega-hosts for the jobs based on the resource attributes of the respective mega-hosts and the resource requirements of the jobs.
摘要:
According to one aspect of the present disclosure, a method and technique for job distribution within a grid environment is disclosed. The method includes: receiving jobs at a submission cluster for distribution of the jobs to at least one of a plurality of execution clusters, each execution cluster comprising one or more execution hosts; determining resource attributes corresponding to each execution host of the execution clusters; grouping, for each execution cluster, execution hosts based on the resource attributes of the respective execution hosts; defining, for each grouping of execution hosts, a mega-host for the respective execution cluster, the mega-host for a respective execution cluster defining resource attributes based on the resource attributes of the respective grouped execution hosts; determining resource requirements for the jobs; and identifying candidate mega-hosts for the jobs based on the resource attributes of the respective mega-hosts and the resource requirements of the jobs.
摘要:
FIG. 1 is a front, right and top perspective view of a toothbrush head, showing my design. FIG. 2 is a rear, left and bottom perspective view thereof. FIG. 3 is a front elevation view thereof. FIG. 4 is a rear elevation view thereof. FIG. 5 is a left side elevation view thereof. FIG. 6 is a right side elevation view thereof. FIG. 7 is a top plan view thereof; and, FIG. 8 is a bottom plan view thereof. The broken lines depict portions of the toothbrush head that form no part of the claimed design.
摘要:
An opto-electronic device includes: (1) a first electrode; (2) at least one semiconductor layer disposed over the first electrode, the semiconductor layer including an emissive layer; and (3) a second electrode disposed over the semiconductor layer. The second electrode includes a fullerene-containing magnesium alloy which includes a non-zero amount of a fullerene of up to about 15 vol. % of the fullerene, and the second electrode has a thickness of about 50 nm or less.
摘要:
A method of preparing a purified collagen solution from porcine skin may include receiving and inspecting the porcine skin; treating the porcine skin with a sodium hydroxide treatment, resulting in a sodium hydroxide processed skin; treating the sodium hydroxide processed skin with an ethanol treatment, resulting in ethanol treated processed skin; producing liquid collagen from the ethanol treated processed skin; clarifying the liquid collagen; and concentrating the clarified liquid collagen.
摘要:
A two-stage cascade refrigeration system is provided having a first refrigeration stage and a second refrigeration stage. The first refrigeration stage defines a first fluid circuit for circulating a first refrigerant, and has a first compressor, a condenser, and a first expansion device that is in fluid communication with the first fluid circuit. The second refrigeration stage defines a second fluid circuit for circulating a second refrigerant, with the second refrigeration stage having a second compressor, a second expansion device, and an evaporator that is in fluid communication with the second fluid circuit. A heat exchanger is in fluid communication with the first and second fluid circuits to exchange heat between the first and second refrigerants. At least one of the first or second compressors is a variable speed compressor.