Abstract:
A method and system for detecting a charging current supplied to a portable device through a USB charger. The method includes the steps of connecting a charging circuit to a portable device, allowing the portable device to draw charging current from the charging circuit, measuring the current drawn from the charging circuit, comparing the measured current with a threshold value, making one or more system level decisions regarding charging of the portable device if the detected charging current is below the threshold current.
Abstract:
An emulation system for charging any arbitrary portable device through a communication port on the portable device. The system includes a receptacle port for communicating with the portable device and a profile database for storing multiple charging profiles. Each charging profile including a set of parameters and at least one exit condition. Further, an emulation module applies a first charging profile to the portable device and monitors the set of parameters associated with the charging profile to identify an associated exit condition. Upon a determination that the exit condition for the first charging profile is met, the emulation module applies a next charging profile to the portable device.
Abstract:
An emulation system for determining an arbitrary charging protocol in USB charging ports and for optimally charging portable devices. The emulation system comprises a power switch for powering on the emulation system, a high-speed data switch for transferring data to and from the portable device, a USB receptacle port including data pins (DP and DM), VBUS, and GND. The emulation system further comprises a profile database that stores one or more charging profiles including one or more stimulus-response pairs for each charging profile. The emulation circuit further includes emulation circuitry for detecting stimulus generated by the portable device and for generating responses according to the charging profiles.
Abstract:
A method and system for optimizing the behavior of a charger connected to a portable device when the portable device current exceeds the charger current limit. The system includes a configuration module configured to set a maximum current limit and a register-based current limit values. The system further includes a port power switch configured to limit the portable device current, in the event that the portable device current exceeds the maximum current limit value. The port power switch is configures to modify the portable device current to a predetermined constant current value or reset the current to zero based on the relation between the maximum current limit and the register-based current limit value.
Abstract:
The invention is related to a method and system for temperature regulation of a power switch during charging of a portable device. The method includes the steps of establishing a connection between the portable device and a charging circuit, monitoring a charging current supplied from the charging circuit to the portable device, monitoring a temperature of the power switch, while the portable device is being charged, comparing the monitored temperature with a predefined threshold temperature, and restricting the charging current, based on the comparison.
Abstract:
A method and system for optimizing the behavior of a charger connected to a portable device when the portable device current exceeds the charger current limit. The system includes a configuration module configured to set a maximum current limit and a register-based current limit values. The system further includes a port power switch configured to limit the portable device current, in the event that the portable device current exceeds the maximum current limit value. The port power switch is configures to modify the portable device current to a predetermined constant current value or reset the current to zero based on the relation between the maximum current limit and the register-based current limit value.
Abstract:
The invention is related to a method and system for temperature regulation of a power switch during charging of a portable device. The method includes the steps of establishing a connection between the portable device and a charging circuit, monitoring a charging current supplied from the charging circuit to the portable device, monitoring a temperature of the power switch, while the portable device is being charged, comparing the monitored temperature with a predefined threshold temperature, and restricting the charging current, based on the comparison.
Abstract:
An emulation system for charging any arbitrary portable device through a communication port on the portable device. The system includes a receptacle port for communicating with the portable device and a profile database for storing multiple charging profiles. Each charging profile including a set of parameters and at least one exit condition. Further, an emulation module applies a first charging profile to the portable device and monitors the set of parameters associated with the charging profile to identify an associated exit condition. Upon a determination that the exit condition for the first charging profile is met, the emulation module applies a next charging profile to the portable device.
Abstract:
A method and system for detecting a charging current supplied to a portable device through a USB charger. The method includes the steps of connecting a charging circuit to a portable device, allowing the portable device to draw charging current from the charging circuit, measuring the current drawn from the charging circuit, comparing the measured current with a threshold value, making one or more system level decisions regarding charging of the portable device if the detected charging current is below the threshold current.