摘要:
The present invention relates to a system and methodology to facilitate automatic generation of mnemonic audio portions or segments referred to as audio thumbnails. A system is provided for summarizing audio information. The system includes an analysis component to determine common features in an audio file and a mnemonic detector to extract fingerprint portions of the audio file based in part on the common features in order to generate a thumbnail of the audio file. The generated thumbnails can then be employed to facilitate browsing or searching audio files in order to mitigate listening to longer portions or segments of such files.
摘要:
The present invention relates to a system and methodology to facilitate automatic management and pruning of audio files residing in a database. Audio fingerprinting is a powerful tool for identifying streaming or file-based audio, using a database of fingerprints. Duplicate detection identifies duplicate audio clips in a set, even if the clips differ in compression quality or duration. The present invention can be provided as a self-contained application that it does not require an external database of fingerprints. Also, a user interface provides various options for managing and pruning the audio files.
摘要:
A general probabilistic formulation referred to as ‘Conditional Harmonic Mixing’ is provided, in which links between classification nodes are directed, a conditional probability matrix is associated with each link, and where the numbers of classes can vary from node to node. A posterior class probability at each node is updated by minimizing a divergence between its distribution and that predicted by its neighbors. For arbitrary graphs, as long as each unlabeled point is reachable from at least one training point, a solution generally always exists, is unique, and can be found by solving a sparse linear system iteratively. In one aspect, an automated data classification system is provided. The system includes a data set having at least one labeled category node in the data set. A semi-supervised learning component employs directed arcs to determine the label of at least one other unlabeled category node in the data set.
摘要:
Prior to searching a multidimensional feature space populated with data objects, each dimension in the feature space is divided into a number of intervals. When a query is received, a single interval that is overlapped by the query is selected from each dimension. A reduced set of data objects is then selected that includes only those data objects that overlap the selected intervals. This reduced set of data objects, rather than the entire set of data objects in the feature space, is then used to determine matches for the query.
摘要:
The present invention provides systems and methods for signal detection and enhancement. The systems and methods utilize one or more discriminative classifiers (e.g., a logistic regression model and a convolutional neural network) to estimate a posterior probability that indicates whether a desired signal is present in a received signal. The discriminative estimators generate the estimated probability based on one or more signal-to-noise ratio (SNRs) (e.g., a normalized logarithmic posterior SNR (nlpSNR) and a mel-transformed nlpSNR (mel-nlpSNR)) and an estimated noise model. Depending on the resolution desired, the estimated SNR can be generated at a frame level or at an atom level, wherein the atom level estimates are utilized to generate the frame level estimate. The novel systems and methods can be utilized to facilitate speech detection, speech recognition, speech coding, noise adaptation, speech enhancement, microphone arrays and echo-cancellation.
摘要:
Systems and methods are disclosed that facilitate producing probabilistic outputs also referred to as posterior probabilities. The probabilistic outputs include an estimate of classification strength. The present invention intercepts non-probabilistic classifier output and applies a set of kernel models based on a softmax function to derive the desired probabilistic outputs. Such probabilistic outputs can be employed with handwriting recognition where the probability of a handwriting sample classification is combined with language models to make better classification decisions.
摘要:
Prior to searching a multidimensional feature space populated with data objects, each dimension in the feature space is divided into a number of intervals. When a query is received, a single interval that is overlapped by the query is selected from each dimension. A reduced set of data objects is then selected that includes only those data objects that overlap the selected intervals. This reduced set of data objects, rather than the entire set of data objects in the feature space, is then used to determine matches for the query.
摘要:
An incoming electronic communication is broken down into message portions. Features of the message portions are extracted and the message portions are converted into sparse feature vectors. The probabilities of the message portions being of interest of the user are calculated and the message portions are converted back into text. Message portions with a relatively high probability of being of interest to a user are presented to the user as a summary.
摘要:
Prior to searching a multidimensional feature space populated with data objects, each dimension in the feature space is divided into a number of intervals. When a query is received, a single interval that is overlapped by the query is selected from each dimension. A reduced set of data objects is then selected that includes only those data objects that overlap the selected intervals. This reduced set of data objects, rather than the entire set of data objects in the feature space, is then used to determine matches for the query.
摘要:
Systems and methods are disclosed that facilitate producing probabilistic outputs also referred to as posterior probabilities. The probabilistic outputs include an estimate of classification strength. The present invention intercepts non-probabilistic classifier output and applies a set of kernel models based on a softmax function to derive the desired probabilistic outputs. Such probabilistic outputs can be employed with handwriting recognition where the probability of a handwriting sample classification is combined with language models to make better classification decisions.