摘要:
The present invention is for crosslinked membranes and in particular for crosslinked poly(ethylene oxide)-cellulose acetate-silsesquioxane (PEO-CA-Si) organic-inorganic hybrid membranes and their use in gas separation. These crosslinked PEO-CA-Si membranes were prepared by in-situ sol-gel co-condensation of crosslinkable PEO-organotrialkoxysilane and CA-organotrialkoxysilane polymers in the presence of acetic acid catalyst during the formation of membranes. The crosslinkable PEO- and CA-organotrialkoxysilane polymers were synthesized via the reaction between the hydroxyl groups on PEO (or on CA) and the isocyanate on organotrialkoxysilane to form urethane linkages under mild conditions. The crosslinked PEO-CA-Si membranes exhibited both increased selectivity of CO2/N2 and CO2 permeability as compared to a CA membrane, suggesting that these membranes are very promising for gas separations such as CO2/N2 separation.
摘要:
The present invention is for crosslinked membranes and in particular for crosslinked poly(ethylene oxide)-cellulose acetate-silsesquioxane (PEO-CA-Si) organic-inorganic hybrid membranes and their use in gas separation. These crosslinked PEO-CA-Si membranes were prepared by in-situ sol-gel co-condensation of crosslinkable PEO-organotrialkoxysilane and CA-organotrialkoxysilane polymers in the presence of acetic acid catalyst during the formation of membranes. The crosslinkable PEO- and CA-organotrialkoxysilane polymers were synthesized via the reaction between the hydroxyl groups on PEO (or on CA) and the isocyanate on organotrialkoxysilane to form urethane linkages under mild conditions. The crosslinked PEO-CA-Si membranes exhibited both increased selectivity of CO2/N2 and CO2 permeability as compared to a CA membrane, suggesting that these membranes are very promising for gas separations such as CO2/N2 separation.
摘要:
The present invention discloses mixed matrix membranes (MMMs) comprising ion-exchanged molecular sieves such as UZM-5 zeolite ion-exchanged with Li+ cation (Li-UZM-5) and a continuous polymer matrix and methods for making and using these membranes. These MMMs, comprising ion-exchanged molecular sieves, in the form of symmetric dense films, asymmetric flat sheets, asymmetric hollow fibers, or thin-film composites, have exhibited simultaneously increased selectivity and permeability (or permeance) over polymer-only membranes and the mixed matrix membranes made from molecular sieves that have not been ion exchanged for gas separations. These MMMs are suitable for a variety of liquid, gas, and vapor separations such as desalination of water by reverse osmosis, deep desulfurization of gasoline and diesel fuels, ethanol/water separations, pervaporation dehydration of aqueous/organic mixtures, CO2/CH4, CO2/N2, H2/CH4, O2/N2, olefin/paraffin, iso/normal paraffins separations, and other light gas mixture separations.
摘要:
The present invention discloses method for making defect-free high performance mixed matrix membranes (MMMs) containing a continuous polymer matrix and dispersed molecular sieves such as AlPO-14 or UZM-5. These MMMs can be used for separations. The novel method for making defect-free high performance MMMs comprises: post treating the MMM at a temperature ≧150° C. This new method results in a MMM with either no macrovoids or voids of less than 5 angstroms at the interface of the continuous polymer matrix and the molecular sieves. The MMMs are in the form of symmetric dense film, thin-film composite (TFC), asymmetric flat sheet or asymmetric hollow fiber. These MMMs have good flexibility and high mechanical strength, and exhibit high carbon dioxide/methane (CO2/CH4) selectivity and high CO2 permeance for CO2/CH4 separation. The MMMs are suitable for a variety of liquid, gas, and vapor separations.
摘要:
The present invention discloses methods of separating gases using high performance UV cross-linked polymer functionalized molecular sieve/polymer mixed matrix membranes (MMMs) with either no macrovoids or voids of less than several angstroms at the interface of the polymer matrix and the molecular sieves. These UV cross-linked MMMs were prepared by incorporating polyethersulfone (PES) functionalized molecular sieves such as AIPO-14 and UZM-25 small pore microporous molecular sieves into a continuous UV cross-linkable polyimide polymer matrix followed by UV cross-linking. The UV cross-linked MMMs in the form of symmetric dense film, asymmetric flat sheet membrane, or asymmetric hollow fiber membranes have good flexibility, high mechanical strength, and exhibit significantly enhanced selectivity and permeability over polymer membranes made from corresponding continuous polyimide polymer matrices for carbon dioxide/methane and hydrogen/methane separations. The MMMs of the present invention are suitable for a variety of liquid, gas, and vapor separations.
摘要:
Mixed matrix membranes that are capable of separation and purification of gas mixtures are disclosed. These membranes comprise polymers that include dispersed therein nanomolecular sieve particles. In a preferred embodiment, the nanomolecular sieve particles contain attached functional groups to prevent their agglomeration.
摘要:
The present invention is for crosslinked membranes and in particular for crosslinked poly(ethylene oxide)-cellulose acetate-silsesquioxane (PEO-CA-Si) organic-inorganic hybrid membranes and their use in gas separation. These crosslinked PEO-CA-Si membranes were prepared by in-situ sol-gel co-condensation of crosslinkable PEO-organotrialkoxysilane and CA-organotrialkoxysilane polymers in the presence of acetic acid catalyst during the formation of membranes. The crosslinkable PEO- and CA-organotrialkoxysilane polymers were synthesized via the reaction between the hydroxyl groups on PEO (or on CA) and the isocyanate on organotrialkoxysilane to form urethane linkages under mild conditions. The crosslinked PEO-CA-Si membranes exhibited both increased selectivity of CO2/N2 and CO2 permeability as compared to a CA membrane, suggesting that these membranes are very promising for gas separations such as CO2/N2 separation.
摘要:
Metal-organic framework (MOF)-polymer mixed matrix membranes (MOF-MMMs) have been prepared by dispersing high surface area MOFs (e.g. IRMOF-1) into a polymer matrix (e.g. Matrimid 5218). The MOFs allow the polymer to infiltrate the pores of the MOFs, which improves the interfacial and mechanical properties of the polymer and in turn affects permeability. Pure gas permeation tests show the incorporation of 20 wt-% of IRMOF-1 in Matrimid 5218 polyimide matrix results in 280% improvement in CO2 permeability without a loss of CO2/CH4 selectivity compared to those of the pure Matrimid 5218 membrane. This type of MOF-MMMs has significantly improved gas separation performance with dramatically high CO2 permeability (>35 barrer) and higher than 29 CO2/CH4 selectivity at 50° C. under 100 psig pressure, which are attractive candidates for practical gas separation applications such as CO2 removal from natural gas.
摘要:
The present invention discloses an approach for making mixed matrix membranes (MMMs) and methods for using these membranes. These MMMs contain a continuous polymer matrix and dispersed microporous molecular sieve particles. In particular, the present invention is directed to make asymmetric thin-film composite MMMs by coating a thin layer of molecular sieve/polymer mixed matrix solution on top of a porous support substrate followed by controlling the formation of a thin dense selective mixed matrix layer equal or larger in thickness than any of said molecular sieve particles. The MMMs of the present invention are suitable for a variety of liquid, gas, and vapor separations. The MMMs of the present invention have at least 20% increase in selectivity for these separations compared to the polymer membranes prepared from their corresponding continuous polymer matrices.
摘要:
The invention discloses the use of polymer functionalized molecular sieve/polymer mixed matrix membranes (MMMs) with either no macrovoids or voids of less than several Angstroms at the interface of the polymer matrix and the molecular sieves by incorporating polyethersulfone (PES) or cellulose triacetate (CTA) functionalized molecular sieves into a continuous polyimide or cellulose acetate (CA) polymer matrix. The MMMs, particularly PES functionalized AlPO-14/polyimide MMMs and CTA functionalized AlPO-14/CA MMMs, in the form of symmetric dense film, asymmetric flat sheet membrane, or asymmetric hollow fiber have good flexibility and high mechanical strength, and exhibit significantly enhanced selectivity and/or permeability over the polymer membranes made from the corresponding continuous polymer matrices for carbon dioxide/methane (CO2/CH4), hydrogen/methane (H2/CH4), propylene/propane separations and a variety of liquid, gas, and vapor separations.