Abstract:
A method is provided in one example embodiment and includes creating a segment organization, which includes a configuration profile. The method also includes attaching the configuration profile to a server in the segment organization. The method further includes sending the attached configuration profile to a database in a physical network.
Abstract:
Packet transmission techniques are disclosed herein. An exemplary method includes receiving a packet that identifies an internet protocol (IP) address assigned to more than one destination node; selecting a virtual routing and forwarding table based, at least in part, on a segmentation identification in the packet; identifying a designated destination node in the packet based, at least in part, on the selected virtual routing and forwarding table; and transmitting the packet to the designated destination node.
Abstract:
A leaf switch of a switch fabric includes multiple ports to connect with respective ones of multiple servers. Virtual local area networks (VLANs) are configured on the leaf switch. Dynamic creation of virtual ports is enabled on the leaf switch for at least one of the VLANs on an as needed basis. The leaf switch receives from a particular server connected to a corresponding one of the ports a notification message that a virtual machine is hosted on the particular server. Responsive to the notification message, the leaf switch dynamically creates a virtual port that associates the corresponding one of the ports with the at least one of the VLANs.
Abstract:
A method is provided in one example embodiment and includes creating a segment organization, which includes a configuration profile. The method also includes attaching the configuration profile to a server in the segment organization. The method further includes sending the attached configuration profile to a database in a physical network.
Abstract:
A method is provided in one example embodiment and includes receiving at a first network element a packet from a second network element; processing the packet at the first network element to obtain information regarding an identity of a virtual machine (“VM”) hosted by the second network element contained within the packet; and storing at the first network element the identifying information. The identifying information stored at the first network element is accessible by at least one third network element. In some embodiments, the first network element comprises a physical switch and the second network element comprises a virtual switch.
Abstract:
Packet transmission techniques are disclosed herein. An exemplary method includes receiving a packet that identifies an internet protocol (IP) address assigned to more than one destination node; selecting a virtual routing and forwarding table based, at least in part, on a segmentation identification in the packet; identifying a designated destination node in the packet based, at least in part, on the selected virtual routing and forwarding table; and transmitting the packet to the designated destination node.
Abstract:
A method is provided in one example and includes receiving, at a receiving node, a packet that comprises information indicative of an internet protocol address and a segmentation identification, selecting a virtual routing and forwarding table corresponding with the segmentation identification, identifying a destination node based, at least in part, on the internet protocol address and the virtual routing and forwarding table, and transmitting the packet to the destination node.
Abstract:
A method is provided in one example embodiment and includes creating a segment organization, which includes a configuration profile. The method also includes attaching the configuration profile to a server in the segment organization. The method further includes sending the attached configuration profile to a database in a physical network.
Abstract:
Packet transmission techniques are disclosed herein. An exemplary method includes receiving a packet that identifies an internet protocol (IP) address assigned to more than one destination node; selecting a virtual routing and forwarding table based, at least in part, on a segmentation identification in the packet; identifying a designated destination node in the packet based, at least in part, on the selected virtual routing and forwarding table; and transmitting the packet to the designated destination node.
Abstract:
A method is provided in one example embodiment and includes creating a segment organization, which includes a configuration profile. The method also includes attaching the configuration profile to a server in the segment organization. The method further includes sending the attached configuration profile to a database in a physical network.