Fast remote failure notification
    3.
    发明申请
    Fast remote failure notification 有权
    快速远程故障通知

    公开(公告)号:US20090010153A1

    公开(公告)日:2009-01-08

    申请号:US11824885

    申请日:2007-07-03

    IPC分类号: H04L12/24

    摘要: A method and system for failure notification at a remote node in communication with a local node are disclosed. The local node is configured for faster failure detection than the remote node. In one embodiment, the method includes establishing a failure monitoring session between the local node and the remote node, receiving at the remote node, a failure notification from the local node, the failure notification sent using a protocol of the failure monitoring session, and rerouting traffic at the remote node in response to the failure notification.

    摘要翻译: 公开了一种在与本地节点通信的远程节点处的故障通知的方法和系统。 本地节点配置为比远程节点更快的故障检测。 在一个实施例中,该方法包括在本地节点和远程节点之间建立故障监视会话,在远程节点接收来自本地节点的故障通知,使用故障监视会话的协议发送的故障通知和重新路由 响应故障通知在远程节点的流量。

    System and method for dynamically responding to event-based traffic redirection
    6.
    发明申请
    System and method for dynamically responding to event-based traffic redirection 有权
    用于动态响应基于事件的流量重定向的系统和方法

    公开(公告)号:US20060291391A1

    公开(公告)日:2006-12-28

    申请号:US11168694

    申请日:2005-06-27

    IPC分类号: H04J1/16 H04L12/28 H04L12/56

    摘要: A technique dynamically resizes Traffic Engineering (TE) Label Switched Paths (LSPs) at a head-end node of the TE-LSPs in preparation to receive redirected traffic in response to an event in a computer network. The novel dynamic TE-LSP resizing technique is based on the detection of an event in the network that could cause traffic destined for one or more other (“remote”) head-end nodes of one or more TE-LSPs to be redirected to an event-detecting (“local”) head-end node of one or more TE-LSPs. An example of such a traffic redirection event is failure of a remote head-end node or failure of any of its TE-LSPs. Specifically, the local head-end node maintains TE-LSP steady state sampling and resizing frequencies to adapt the bandwidth of its TE-LSP(s) to gradual changes in the network over time. Upon detection of an event identifying possible traffic redirection, the local head-end node enters a Fast Resize (FR) state, in which the sampling and resizing frequencies are increased to quickly adapt the TE-LSP bandwidth(s) to any received redirected traffic.

    摘要翻译: 技术动态地调整TE-LSP的头端节点处的流量工程(TE)标签交换路径(LSP),准备响应于计算机网络中的事件接收重定向的流量。 新型动态TE-LSP调整大小技术基于网络中可能导致一个或多个TE-LSP的一个或多个其他(“远程”)头端节点的流量被重定向到的事件的检测 一个或多个TE-LSP的事件检测(“本地”)头端节点。 这种流量重定向事件的示例是远程头端节点的故障或其任何TE-LSP的故障。 具体来说,本地前端节点维护TE-LSP稳态采样和调整频率,以适应其TE-LSP的带宽随时间逐渐变化的网络。 在检测到识别可能的业务重定向的事件时,本地前端节点进入快速调整大小(FR)状态,其中增加采样和调整大小频率以快速地将TE-LSP带宽适配到任何接收到的重定向业务 。

    Loop prevention technique for MPLS using service labels
    7.
    发明申请
    Loop prevention technique for MPLS using service labels 有权
    使用服务标签的MPLS环路防护技术

    公开(公告)号:US20060193248A1

    公开(公告)日:2006-08-31

    申请号:US11068081

    申请日:2005-02-28

    摘要: A local fast reroute (FRR) technique is implemented at the edge of a computer network. In accordance with the technique, if an edge device detects a node or link failure that prevents it from communicating with a neighboring routing domain, the edge device reroutes at least some data packets addressed to that domain to a backup edge device which, in turn, forwards the packets to the neighboring domain. The rerouted packets are designated as being “protected” (i.e., rerouted) data packets before they are forwarded to the backup edge device. The backup edge device identifies protected data packets as those which contain a predetermined “service” label in their MPLS label stacks. In other words, the service label is used as an identifier for packets that have been FRR rerouted. Upon receiving a data packet containing a service label, the backup edge device is not permitted to reroute the packet a second time, e.g., in response to another inter-domain node or link failure, thereby preventing loops from developing at the edge of the network.

    摘要翻译: 本地快速重路由(FRR)技术在计算机网络的边缘实现。 根据该技术,如果边缘设备检测到阻止其与相邻路由域通信的节点或链路故障,则边缘设备将至少一些寻址到该域的数据分组重新路由到备用边缘设备, 将数据包转发到相邻域。 重新路由的数据包在被转发到备份边缘设备之前被指定为“保护”(即重新路由)数据分组。 备份边缘设备将受保护的数据包标识为在其MPLS标签堆栈中包含预定“服务”标签的数据包。 换句话说,服务标签被用作已被FRR重新路由的数据包的标识符。 在接收到包含服务标签的数据分组时,不允许备份边缘设备第二次重新路由该分组,例如响应于另一个域间节点或链路故障,从而防止在网络边缘发展的环路 。

    Mechanism to improve concurrency in execution of routing computation and routing information dissemination

    公开(公告)号:US20060045024A1

    公开(公告)日:2006-03-02

    申请号:US10928866

    申请日:2004-08-27

    IPC分类号: H04L12/56 H04L12/26

    摘要: A technique enables an intermediate network node to efficiently process link-state packets using a single running context (i.e., process or thread). The intermediate network node floods received link-state packets (LSP) before performing shortest path first (SPF) calculations and routing information base (RIB) updates. In addition, the node limits the number of LSPs that are permitted to be flooded before the node performs its SPF calculations. More specifically, if the number of link-state packets that are flooded during a flooding cycle exceeds a first predetermined threshold value, the node performs the SPF calculations before additional packets may be flooded. The intermediate network node also limits how long its RIB update may be delayed in favor of flooding operations. When the number of LSPs flooded after the SPF calculations exceeds a second predetermined threshold value or there are no more packets to be flooded, the node updates the contents of its RIB based on the SPF calculations.

    Method and apparatus for determining network routing information based on shared risk link group information
    10.
    发明申请
    Method and apparatus for determining network routing information based on shared risk link group information 有权
    基于共享风险链路组信息确定网络路由信息的方法和装置

    公开(公告)号:US20050111349A1

    公开(公告)日:2005-05-26

    申请号:US10719003

    申请日:2003-11-21

    摘要: A method and apparatus are disclosed for performing a shortest path first network routing path determination in a data communications network based in part on information about links that are associated as shared risk link groups. Micro-loops are avoided in computing shortest path first trees by considering whether links are within shared risk link groups. In a first approach, for each link state packet in a link state database, listed adjacencies are removed if the link between the node originating the LSP and the reported adjacency belongs to a shared risk link group for which one component (local link) is known as down, and a shortest path first computation is then performed. In a second approach, during the SPT computation and after having added a first node to a path, each neighboring node is added to a tentative tree if and only if, a link between the first node and the neighboring node does not belong to a shared risk link group for which one component (local link) is known as down.

    摘要翻译: 公开了一种用于在数据通信网络中执行最短路径第一网络路由路径确定的方法和装置,部分地基于关于作为共享风险链路组关联的链路的信息。 通过考虑链路是否在共享风险链路组内,避免了计算最短路径树的微循环。 在第一种方法中,对于链路状态数据库中的每个链路状态分组,如果发起LSP的节点和报告的邻接关系之间的链路属于已知一个组件(本地链路)的共享风险链路组,则删除列出的邻接关系 然后执行最短路径优先计算。 在第二种方法中,在SPT计算期间,并且在将第一节点添加到路径之后,当且仅当第一节点和相邻节点之间的链路不属于共享时,每个相邻节点被添加到暂定树 一个组件(本地链路)被称为down的风险链路组。