Abstract:
A system and method for determining deposition parameters within an industrial heating system is provided. The system includes a phased array probe arranged adjacent to a tube within the industrial heating system. The phased array probe transmits and receives signals. A processing unit is in communication with the phased array probe for processing the received signals to generate data on deposition parameters of the tube. A display unit is coupled to the processing unit for displaying the data.
Abstract:
A method for diagnosing a vessel having a casing with multiple isolated fluid pathways disposed therein, is provided. The vessel provides for at least one fluid flow. The method includes disposing an ultrasonic device proximate to the vessel, emitting multiple ultrasonic probe signals from the ultrasonic device, evaluating the reflected signals for at least one characteristic of the at least one fluid flow through the flow area, and generating a set of fluid flow characteristics of the flow area based on the evaluating. The probe signals are configured to interact with a flow area and generate multiple reflected signals.
Abstract:
A system and method for high-speed radiographic inspection of fluid transport vessels in which a radiation source and a radiation detector are positioned on opposite sides of the outside surface of the vessel. A positioning system is provided for moving and locating the radiation source and radiation detector longitudinally with respect to the vessel and for moving the radiation source and radiation detector circumferentially with respect to the vessel. In operation, the positioning system causes the radiation source and radiation detector to spiral along the vessel in a coordinated manner while the radiation source illuminates an adjacent region of the vessel with radiation. The radiation is converted into corresponding electrical signals used to generate images of objects in the radiation path. Finally, an operator inspects the images for defects.
Abstract:
A method for non-destructively inspecting a composite structure with a single ultrasonic transducer includes determining a calibration amplitude of ultrasonic transmissions emitted by the single ultrasonic transducer to a reflector in a fluid-filled immersion tank and received back at the single ultrasonic transducer. The method also includes inserting the composite structure into the fluid-filled immersion tank between the reflector and the single ultrasonic transducer. In addition, the method includes scanning the composite structure with the single ultrasonic transducer to measure ultrasonic amplitudes for sound waves traveling through the composite structure, reflecting off the reflector plate and then traveling back through the structure to the single ultrasonic transducer. The measured ultrasonic amplitudes are corrected using the calibration amplitude and other measured transmission losses, and the corrected ultrasonic amplitudes are utilized to generate either or both a digital image showing porosity or a measurement of porosity of the composite structure.
Abstract:
In an electrochemical machining tool assembly having at least one electrode arranged across a gap from a workpiece, the electrode being energized by application of a potential difference ΔV between the electrode and the workpiece, a method of monitoring machining includes exciting at least one ultrasonic sensor to direct an ultrasonic wave toward a surface of the electrode and receiving a reflected ultrasonic wave from the surface of the electrode using the ultrasonic sensor. The reflected ultrasonic wave includes a number of reflected waves from the surface of the electrode and from a surface of the workpiece. The method further includes delaying the excitation of the ultrasonic sensor a dwell time Td after a reduction of the potential difference ΔV across the electrode and the workpiece occurs.
Abstract:
The present invention is directed to a method for determining an emulsion layer within a container comprising, initiating an ultrasonic signal from at least one transmitter through a liquid contained within a tank, receiving the signal at a receiver, measuring the time of flight of the signal, calculating the velocity of the ultrasonic signal, determining the composition of the liquid in the tank; and correlating the composition to an emulsion ratio.
Abstract:
In an electrochemical machining tool assembly having at least one electrode arranged across a gap from a workpiece, the electrode being energized by application of a potential difference ΔV between the electrode and the workpiece, a method of monitoring machining includes exciting at least one ultrasonic sensor to direct an ultrasonic wave toward a surface of the electrode and receiving a reflected ultrasonic wave from the surface of the electrode using the ultrasonic sensor. The reflected ultrasonic wave includes a number of reflected waves from the surface of the electrode and from a surface of the workpiece. The method further includes delaying the excitation of the ultrasonic sensor a dwell time Td after a reduction of the potential difference ΔV across the electrode and the workpiece occurs.
Abstract:
A system and method for monitoring defects in a structure are provided. The system includes a power supply for supplying an electric current to a monitoring area of the structure and a reference; a measurement circuit for measuring a potential drop across at least two contact points of the monitoring area and at least two contact points of the reference; and a processor adapted to determine a ratio of the monitoring area potential drop to the reference potential drop indicative of a percentage change in a thickness of the structure. The method includes the steps of supplying the current to the monitoring area and the reference; measuring a first potential drop across the monitoring area and the reference; and determining the ratio indicative of the percentage change in the thickness of the structure.
Abstract:
A system for monitoring a weld operation is provided. The system includes an ultrasonic wave generator adapted to deliver an ultrasonic wave to a target material during the weld operation and an ultrasonic receiver adapted to receive the ultrasonic wave propagated through the target material. The system also includes a signal processor adapted to determine a quality level of a weld created during the weld operation by extracting data corresponding to a torsional mode from the ultrasonic wave and comparing the data to a profile that corresponds to an acceptable quality level.
Abstract:
A digital radiography imaging system for acquiring digital images of an object, and a method for transforming digital images into an absolute thickness map characterizing the object under inspection. The system includes a radiation source for directing radiation through a desired region of the object, and a radiation detector having a plurality of sensing elements for detecting radiation passing through the object. Numerical data generated from each sensing element is calibrated, for example by correcting for variations in radiation paths between the source and detector, by correcting for variations in the spatial frequency response (MTF) of the detector, by correcting for variations in the geometric profile of the object under inspection, and by correcting for material contained in and/or around the object. The calibrated data is processed in order to generate and display an absolute thickness map of the object. The calibration procedures are adapted for extracting a thickness map from both isotope sources and X-ray tube sources.