摘要:
An electric motor-actuated tractor (e-Tractor) apparatus and method for use in downhole operations. The apparatus includes a power subassembly, a tractor subassembly and one or more gripper subassemblies and can be: run in a single or multiple e-Tractor configuration; run in either intermittent-motion tractoring mode or continuous-motion tractoring mode with the ability to switch between the two modes; used to generate both distal and proximal longitudinal forces to move the run-in string into or out of the wellbore; repeatedly activated and deactivated without run-in string manipulation or hydraulic pressure; and combined with tensiometer and other sensor package options to provide real-time data to the surface to optimize tractoring operations. The apparatus and method are well-suited for application in an c-coil conveyed workover or completion system, and for use in extended reach laterals in horizontal wells.
摘要:
A method of forming a lateral borehole in a pay zone located within an earth subsurface is provided. The method includes determining a depth of a pay zone in the earth subsurface, and then forming a wellbore within the pay zone. The method also includes conveying a hydraulic jetting assembly into the wellbore on a working string. The assembly includes a jetting hose carrier, and a jetting hose within the jetting hose carrier having a nozzle connected at a distal end. The method additionally includes setting a whipstock in the wellbore along the pay zone, and translating the jetting hose out of the jetting hose carrier to advance the nozzle along the face of the whipstock. The method then includes injecting hydraulic jetting fluid through the jetting hose and connected jetting nozzle, thereby excavating a lateral borehole within the rock matrix, and further injecting the fluid while further translating the jetting hose and connected nozzle along the face of the whipstock without coiling or uncoiling the hose, thereby forming a lateral borehole that extends at least 5 feet from the wellbore.
摘要:
A method for avoiding a frac hit during a formation stimulation operation. The method includes providing a child wellbore within a hydrocarbon-producing field. The method also includes identifying a parent wellbore within the hydrocarbon-producing field. The method also includes conveying a hydraulic jetting assembly into the child wellbore on a working string. The method additionally includes setting a whipstock in the wellbore at a first casing exit location. The method then includes injecting hydraulic jetting fluid through a jetting hose and connected jetting nozzle while advancing the nozzle through against a face of the whipstock, and through a first window. The nozzle advances into the surrounding rock matrix, thereby forming a lateral borehole that extends away from the wellbore. The method also includes controlling (i) a distance of the lateral borehole from the child wellbore, (ii) a direction of the lateral borehole from the child wellbore, or (iii) both prior to hydraulic fracturing.
摘要:
A method for forming lateral boreholes from an existing parent wellbore is provided. The wellbore has been completed with a string of production casing. The method generally comprises providing a downhole tool assembly having a whipstock. The method also includes running the assembly down into the parent wellbore. A force is applied to the assembly to cause the whipstock to rotate within the wellbore into an operating position. In this position, a curved face of the whipstock forms a bend-radius substantially across the inner diameter of the casing. A jetting hose is run into the wellbore. Upon contact with the curved face of the whipstock, the jetting hose is re-directed through a window in the production casing. Hydraulic fluid is injected under pressure through the hose to provide hydraulic jetting. The hose is directed through the window and into the formation to create a lateral borehole extending many feet outwardly into a subsurface formation. A method of testing a subsurface formation for the presence of hydrocarbon fluids is also provided herein.
摘要:
A ported casing collar. The ported casing collar comprises a tubular body defining an outer sleeve. At least first and second portals are placed along the outer sleeve. The casing collar also comprises an inner sleeve. The inner sleeve defines a cylindrical body rotatably residing within the outer sleeve. The inner sleeve contains a plurality of inner portals. A control slot is provided along an outer diameter of the inner sleeve. In addition, a pair of torque pins are provided, configured to ride along the control slot in order to place selected inner portals of the inner sleeve with the first and second portals of the outer sleeve. Preferably, the setting tool is a whipstock configured to receive a jetting hose and connected jetting nozzle. A method of accessing a rock matrix in a subsurface formation is also provided.
摘要:
A method of forming a lateral borehole in a pay zone located within an earth subsurface is provided. The method includes determining a depth of a pay zone in the earth subsurface, and then forming a wellbore within the pay zone. The method also includes conveying a hydraulic jetting assembly into the wellbore on a working string. The assembly includes a jetting hose carrier, and a jetting hose within the jetting hose carrier having a nozzle connected at a distal end. The method additionally includes setting a whipstock in the wellbore along the pay zone, and translating the jetting hose out of the jetting hose carrier to advance the nozzle along the face of the whipstock. The method then includes injecting hydraulic jetting fluid through the jetting hose and connected jetting nozzle, thereby excavating a lateral borehole within the rock matrix, and further injecting the fluid while further translating the jetting hose and connected nozzle along the face of the whipstock without coiling or uncoiling the hose, thereby forming a lateral borehole that extends at least 5 feet from the wellbore.
摘要:
A hydraulic jetting assembly is provided herein. The jetting assembly includes a jetting hose, with a jetting nozzle at its distal end. The jetting nozzle comprises a tubular stator body having a fluid discharge slot, and a tubular rotor body residing within a bore of the stator body. The jetting nozzle has one or more bearings residing between the stator body and the surrounding rotor body to accommodate relative rotational movement. The jetting nozzle includes a proximal end configured to sealingly connect to an end of a jetting hose, and to receive a high pressure jetting fluid. Preferably, the nozzle has an outer diameter that is equivalent to or slightly larger than an outer diameter of the jetting hose. Preferably, the jetting assembly has at least three actuator wires configured to induce a controlled bending moment at its distal end, thereby providing for a steerable downhole tool. Jetting collars may be placed along the jetting hose to overcome drag force.
摘要:
A method for forming lateral boreholes from an existing parent wellbore is provided. The wellbore has been completed with a string of production casing. The method generally comprises providing a downhole tool assembly having a whipstock. The method also includes running the assembly down into the parent wellbore. A force is applied to the assembly to cause the whipstock to rotate within the wellbore into an operating position. In this position, a curved face of the whipstock forms a bend-radius substantially across the inner diameter of the casing. A jetting hose is run into the wellbore. Upon contact with the curved face of the whipstock, the jetting hose is re-directed through a window in the production casing. Hydraulic fluid is injected under pressure through the hose to provide hydraulic jetting. The hose is directed through the window and into the formation to create a lateral borehole extending many feet outwardly into a subsurface formation. A method of testing a subsurface formation for the presence of hydrocarbon fluids is also provided herein.
摘要:
A hydraulic jetting assembly is provided herein. The jetting assembly includes a jetting hose, with a jetting nozzle at its distal end. The jetting nozzle comprises a tubular stator body having a fluid discharge slot, and a tubular rotor body residing within a bore of the stator body. The jetting nozzle has one or more bearings residing between the rotor body and the surrounding stator body to accommodate relative rotational movement. The jetting nozzle includes a proximal end configured to sealingly connect to an end of a jetting hose, and to receive a high pressure jetting fluid. Preferably, the nozzle has an outer diameter that is equivalent to or slightly larger than an outer diameter of the jetting hose. Preferably, the jetting assembly has at least three actuator wires configured to induce a controlled bending moment at its distal end, thereby providing for a steerable downhole tool.
摘要:
A hydraulic jetting assembly is provided herein. The jetting assembly includes a jetting hose, with a jetting nozzle at its distal end. The jetting nozzle comprises a tubular stator body having a fluid discharge slot, and a tubular rotor body residing within a bore of the stator body. The jetting nozzle has one or more bearings residing between the stator body and the surrounding rotor body to accommodate relative rotational movement. The jetting nozzle includes a proximal end configured to sealingly connect to an end of a jetting hose, and to receive a high pressure jetting fluid. Preferably, the nozzle has an outer diameter that is equivalent to or slightly larger than an outer diameter of the jetting hose. Preferably, the jetting assembly has at least three actuator wires configured to induce a controlled bending moment at its distal end, thereby providing for a steerable downhole tool. Jetting collars may be placed along the jetting hose to overcome drag force.